Byte File I/O

Byte file I/O can be used to read and write any type of file (.txt, .jpg, .pdf, .mp3, etc.). The data is read and written one byte at a time.
Byte.open {r|w|a}, <file_table_nvar>, <path_sexp> XE "Byte.open {r|w|a}, <file_table_nvar>, <path_sexp>"
The file specified by the path string expression is opened. If the path starts with "http…" then an Internet file will be opened.

The default path is "<pref base drive>/rfo-basic/data/"

The first parameter describes how the file I/O mode for this file.

r = Read

w = Write from the start of the file. Writes over any existing data in the file.

a = Append. Writing starts after the last line in the file.

A file table number is placed into <file_table_nvar>. This value is for use in subsequent Byte.read, Byte.write or Byte.close commands.

If a file being opened for read does not exist then the <file_table_nvar> will be set to -1. The BASIC! programmer can check for this and either create the file or report the error to the user. Opening a file for append that does not exist creates an empty file. Finally, opening a file for write that already exists deletes the contents of the file; that is, it replaces the existing file with a new, empty one.
Byte.close <file_table_nvar> XE "Byte.close <file_table_nvar>"
Closes the previously opened file.

Byte.read.byte <file_table_nvar>, <byte_nvar> XE "Byte.read.byte <file_table_nvar>, <byte_nvar>"
If <file_table_nvar> = -1 then a run-time error will be thrown.

A single byte is read from the file and placed into <byte_nvar>. After the last byte in the file has been read the value returned in <byte_nvar> will be -1. Further attempts to read from the file will continue to return the -1 value.

This example reads an entire file and prints each byte.

Byte.open r, file_number, "testfile.jpg"
Do

Byte.read file_number, Byte

Print Byte

Until Byte < 0

Byte.close file_number

Byte.write.byte <file_table_nvar>, <byte_nexp>|<sexp> XE "Byte.write.byte <file_table_nvar>, <byte_nexp>|<sexp>"
If the second parameter is a numeric expression then the low order 8 bits of the value will be written to the file as a single byte.

If the second parameter is a string expression then the entire string will be written to the file as 8 bit bytes.

Byte.read.buffer <file_table_nvar>, <count_nexp>, <buffer_svar> XE "Byte.read.buffer <file_table_nvar>, <count_nexp>, <buffer_svar>"
Read the specified count of bytes (<count_nexp>) into the buffer string variable (<buffer_svar>) from the file. If the end of file has been reached, the string length (len(<buffer_svar>) will be zero.

Byte.write.buffer <file_table_nvar>, <sexp> XE "Byte.write.buffer <file_table_nvar>, <sexp>"
The entire contents of the string expression will be written to the file.
Byte.position.get <file_table_nvar>, <position_nvar> XE "Byte.position.get <file_table_nvar>, <position_nexp>"
Get the position of the next byte to be read or written. The position of the first byte is 1. The position value will be incremented by 1 for each byte read or written.

The position information can be used for setting up random file data access.

If the file is opened for append, the position returned will be the length of the file plus one.

Byte.position.set <file_table_nvar>, <position_nexp> XE "Byte.position.set <file_table_nvar>, <position_nexp>"
Set the position of the next by to be read from the file. If the position value is greater than the position of the last byte of the file, the position will point to the end of file.

This command can only be used on files open for byte read.

Byte.copy <file_table_nvar>,<output_file_svar> XE "Byte.copy <file_table_nvar>,<output_file_svar>"
Copies the previously open input file represented by <file_table_nvar> to the file whose path is specified by <output_file_svar>. The default path is "<pref base drive>/rfo-basic/data/".

If <File_table_nvar> = -1 then a run-time error will be thrown.

The input file will be completely copied to the to the output file. Both files will then be closed.

You should use Byte.copy if you are using Byte I/O for the sole purpose of copying. It is thousands (literally) of times faster than using Byte.read/Byte.write.
