
Developers guidelines

October 2008

Java™ Platform, Micro Edition,
CLDC – MIDP 2
for Sony Ericsson feature and entry level phones

Developers guidelines | Java™ ME, CLDC – MIDP 2
Preface

Purpose of this document

This document describes the Java™ ME platform support for Sony Ericsson Java platforms JP-2, JP-3,
JP-4, JP-5, JP-6, JP-7 and JP-8. Corresponding Developers guidelines for the Sony Ericsson Symbian
Java platforms SJP-1 – SJP-3 (P900/ P910 series and P1/P990/M600/W950/W960 series of phones) can
be found on Sony Ericsson Developer World.

Readers who will benefit from this document include:

• Software developers
• Corporate buyers
• IT professionals.

• Support engineers
• Business decision makers

It is assumed that the reader is familiar with Java.
2 October 2008

This document is published by Sony Ericsson
Mobile Communications AB, without any
warranty*. Improvements and changes to this text
necessitated by typographical errors, inaccuracies
of current information or improvements to
programs and/or equipment, may be made by
Sony Ericsson Mobile Communications AB at any
time and without notice. Such changes will,
however, be incorporated into new editions of this
document. Printed versions are to be regarded as
temporary reference copies only.

*All implied warranties, including without limitation
the implied warranties of merchantability or fitness
for a particular purpose, are excluded. In no event
shall Sony Ericsson or its licensors be liable for
incidental or consequential damages of any
nature, including but not limited to lost profits or
commercial loss, arising out of the use of the
information in this document.

These Developers guidelines are published by:

Sony Ericsson Mobile Communications AB,
SE-221 88 Lund, Sweden

Phone: +46 46 19 40 00
Fax: +46 46 19 41 00
www.sonyericsson.com/

© Sony Ericsson Mobile Communications AB,
2003. All rights reserved. You are hereby granted
a license to download and/or print a copy of this
document.
Any rights not expressly granted herein are
reserved.

26th revised edition (October 2008)
Publication number: EN/LZT 108 7584, R26B

Developers guidelines | Java™ ME, CLDC – MIDP 2
Sony Ericsson Developer World

At www.sonyericsson.com/developer, developers find the latest technical documentation and
development tools such as phone White papers, Developers guidelines for different technologies, Getting
started tutorials, SDKs (Software Development Kits) and tool plugins. The Web site also features news
articles, go-to-market advice, moderated discussion forums offering free technical support and a Wiki
community sharing expertise and code examples.

For more information about these professional services, go to the Sony Ericsson Developer World Web
site.

Document conventions

Products

Sony Ericsson phones are referred to in this document by generic names (for information about Sony
Ericsson Java platforms, JP-2, JP-3, and so on, see “Sony Ericsson Java platforms” on page 15):

Generic names
Series

Sony Ericsson phones

No Sony Ericsson Java platform:

F305 F305

J132 J132

K330 K330

R300 R300, R300c, R300a

R306 R306, R306c, R306a

S302 S302

T280 T280i

T303 T303, T303a

W302 W302

Z250 Z250i, Z250c, Z250a

Z320 Z320i, Z320c, Z320a

JP-2 phone:

Z1010 Z1010
3 October 2008

www.sonyericsson.com/developer

Developers guidelines | Java™ ME, CLDC – MIDP 2
JP-3 phones:

F500 F500i

J300 J300i, J300c, J300a

K300 K300i, K300c, K300a

K500 K500i, K506c, K508i, K508c

K700 K700i, K700c

S700 S700i, S700c, S710a

Z500 Z500a

JP-4 phones:

V800 V800, Vodafone 802SE

Z800 Z800i

JP-5 phones:

K600 K600i, K608i

K750 K750i, K750c, D750i

V600 V600i

W700 W700i, W700c

W800 W800i, W800c

Z520 Z520i, Z520c, Z520a

Z525 Z525a

JP-6 phones:

K310 K310i, K310c, K310a

K320 K320i, K320c

K510 K510i, K510c

W200 W200i, W200c

W300 W300i, W300c

W550 W550i, W550c

W600 W600i

W810 W810i, W810c, W810a

W900 W900i

Z530 Z530i, Z530c

Z550 Z550i, Z550c, Z550a

Generic names
Series

Sony Ericsson phones
4 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Z558 Z558i, Z558c

JP-7 phones:

K530 K530i

K550 K550i, K550c

K610 K610i, K610c, K618i

K770 K770i

K790 K790i, K790c, K790a

K800 K800i, K800c

K810 K810i, K818c

S500 S500i, S500c

T650 T650i, T658c

W350 W350i, W350c

W380 W380i, W380c

W580 W580i, W580c

W610 W610i, W610c

W660 W660i

W710 W710i, W710c

W830 W830i, W830c

W850 W850i, W850c

W880 W880i, W888c

Z310 Z310i, Z310a

Z555 Z555i, Z555a

Z610 Z610i

Z710 Z710i, Z710c

Generic names
Series

Sony Ericsson phones
5 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
JP-8 (8.0-8.2) phones:

G502 G502, G502c

K630 K630i

K660 K660i

K850 K850i, K858c

V640 V640i

W890 W890i

W910 W910i, W908c

Z750 Z750i

Z770 Z770i

JP-8.3 phones:

C702 C702, C702c, C702a

C902 C902, C902c

T700 T700

W595 W595, W595s

W760 W760i, W760c

W902 W902

W980 W980i

Z780 Z780i, Z780a

JP-8.4 phones:

C905 C905, C905c, C905a

G705 G705

Generic names
Series

Sony Ericsson phones
6 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Terminology and abbreviations

API
Application Programming Interface

CLDC
Connected Limited Device Configuration. A Java
ME platform configuration for mobile phones

DRM
Digital Rights Management

GSM
Global System for Mobile Communications. GSM
is the world’s most widely used digital mobile
phone system, operating in over 100 countries
around the world, particularly in Europe and Asia-
Pacific

HTTP
HyperText Transfer Protocol

IDE
Integrated Development Environment

Java SE
Java platform, Standard Edition

JSR
Java Specification Request

Mascot Capsule®

Mascot Capsule Micro 3D Engine is software that
renders 3D objects in real-time on a display screen
of an embedded device, portable game unit or
mobile phone

MIDP
Mobile Information Device Profile. A Java ME
platform profile connected to the CLDC for mobile
phones

MMAPI
Mobile Media Application Programming Interface

OMA
Open Mobile Alliance

SDK
Software Development Kit. A collection of tools
used to develop application

SMS
Short Message Service. Allows messages of up to
160 characters to be sent and received in a phone
via the network operator’s message centre

URI
Uniform Resource Identifier.
URIs are short strings that identify online
resources: documents, images, downloadable
files, services, and electronic mailboxes, for
example. URIs use a variety of naming schemes
and access methods, such as http, ftp, mailto and
telnet, to make resources available

URL
Uniform Resource Locator. See URI

WAP
Wireless Application Protocol

WMA
Wireless Messaging API

WTK
Wireless Toolkit
7 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Trademarks and acknowledgements

Java and all Java-based marks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

End-user license agreement for Sun Java platform, Micro Edition.

1 Restrictions: Software is confidential copyrighted information of Sun and title to all copies is retained
by Sun and/or its licensors. Customer shall not modify, decompile, disassemble, decrypt, extract, or
otherwise reverse engineer Software. Software may not be leased, assigned, or sublicensed, in whole
or in part.
2 Export Regulations: Software including technical data, is subject to U.S. export control laws,
including the U.S. Export Administration Act and its associated regulations, and may be subject to
export or import regulations in other countries. Customer agrees to comply strictly with all such
regulations and acknowledges that it has the responsibility to obtain licenses to export, re-export, or
import Software. Software may not be downloaded, or otherwise exported or re-exported (i) into, or to
a national or resident of, Cuba, Iraq, Iran, North Korea, Libya, Sudan, Syria (as such listing may be
revised from time to time) or any country to which the U.S. has embargoed goods; or (ii) to anyone on
the U.S. Treasury Department's list of Specially Designated Nations or the U.S. Commerce
Department's Table of Denial Orders.
3 Restricted Rights: Use, duplication or disclosure by the United States government is subject to the
restrictions as set forth in the Rights in Technical Data and Computer Software Clauses in DFARS
252.227-7013(c) (1) and FAR 52.227-19(c) (2) as applicable.

Borland, the Borland Logo and JBuilder are trademarks or registered trademarks of Borland Software
Corporation in the United States and other countries.

NetBeans is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. and other
countries.

Bluetooth is a trademark or registered trademark of Bluetooth SIG Inc.

Nokia is a registered trademark of Nokia Corporation.

Mascot Capsule is a registered trademark of HI Corporation.

ARM and Jazelle are registered trademarks of ARM Limited.

RealAudio and RealVideo are trademarks or registered trademarks of RealNetworks, Inc.

OpenGL is a registered trademark of Silicon Graphics, Inc..

WALKMAN is a trademark or a registered trademark of Sony Corporation.

Other product and company names mentioned herein may be the trademarks of their respective owners.
8 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Java Verified™ program for Java ME platform

The Java Verified™ Program uses the results of the Unified Testing Initiative launched by the leading
mobile phone manufacturers and Sun Microsystems.

The Java Verified program gives developers a direct way to application testing and to the market. Testing
Providers all over the world, covering different regions, languages and price structures, are authorised by
the Java Verified program to undertake testing on behalf of the program. A developer selects one of these
providers to complete the testing of their application.

An application that successfully meets both the program guidelines and passes the testing
process is permitted to use the Java Powered logo. The logo is provided by Sun Microsystems, at
its own discretion, on a non-exclusive license basis. An application that passes the Java Verified
program testing is digitally signed so that potential distributors can be assured of its integrity and
authenticity.

Once the developer has successfully passed the testing process, their application has the opportunity to
be promoted and showcased in the on-line catalogues of all Java Verified Member Companies, as well as
the commercial catalogues of participating operators.

More information on the Java Verified Program is available at the Java Verified Web site
(www.javaverified.com).
9 October 2008

http://www.javaverified.com

Developers guidelines | Java™ ME, CLDC – MIDP 2
Document history

`Ü~åÖÉ=Üáëíçêó

2003-12-05 Version R1A First edition

2003-12-11 Version R1B Minor updates in technical specifications

2004-03-30 Version R2A Document updated to comply with the latest
software version of the Z1010 phone.
Information about the K700 series and Z500
series added. 3D API information added

2004-07-05 Version R3A Document updated and supplied with com-
plementary information. Information about the
S700 series and F500 added

2004-07-19 Version R4A Information about the K500 series added

2004-11-23 Version R5A Information about the V800 series added

2005-03-09 Version R6A Revised edition. Information about the K300,
J300, K750, W800, Z800 and K600 series
added

2005-04-15 Version R6B Revised edition. Updated specifications.
Added programming tips. Sony Ericsson Java
platform concept implemented in documenta-
tion

2005-04-25 Version R6C Revised edition. Minor editorial changes

2005-08-01 Version R7A Revised edition. Information about the V600,
S600, W600 and Z520 series added

2005-08-08 Version R7B Revised edition. S600 changed to W550

2005-09-30 Version R8A Revised edition, adapted to the
Sony Ericsson SDK for the Java™ ME Plat-
form, ver 2.2.3

2005-10-21 Version R9A Revised edition. Information about the W900
series added

2005-11-07 Version R9B Revised edition. Minor editorial changes

2005-12-12 Version R9C Revised edition. Minor changes

2006-01-04 Version R10A Revised edition. Information about the W810
series added

2006-02-13 Version R11A Revised edition. Information about the K610
series added

2006-02-28 Version R12A Revised edition. Information about the K800,
K790, Z530, W300, K510 and K310 series
added
10 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
2006-04-12 Version R13A 13th edition. Information about the W700 and
Z525 series added

2006-05-19 Version R14A 14th edition. Information about the Z550,
W850, Z710 and W710 series added

2006-06-26 Version R14B Revised edition

2006-07-07 Version R14D Revised edition. Information about Mobile
JUnit added

2006-08-22 Version R15A 15th edition. Information about the K618i and
Z610 series added

2006-09-28 Version R16A 16th edition. Information about W830, K320
and Z558 series and the Z550a model added

2006-11-15 Version R16B 16th revised edition. Minor changes

2007-01-08 Version R17A 17th edition. Information about Z310 and
W200 series added

2007-02-06 Version R18A 18th edition. Information about W880, K550,
W610 and K810 series added

2007-03-13 Version R19A 19th edition. Information about W660 series
added

2007-03-27 Version R20A 20th edition. Information about Z750 and
W580 series added

2007-04-13 Version R20B 20th, revised edition. Minor changes

2007-07-02 Version R21A 21st edition. Information about K530, K850,
S500, T650, W910, Z250 and Z320 series
added

2007-11-06 Version R22A 22nd edition. Information about K630, K660,
K770, V640, W380 and W890 series added

2008-04-08 Version R23A 23rd edition. Information about C702, C902,
R300, R306, T280, T303, W350, W760, W980,
Z555 and Z770 series added

2008-05-20 Version R24A 24th edition. Information about G502 and
Z780 series added

2008-07-22 Version R25A 25th edition. Information about F305, J132,
K330, C905, S302, T700, W302, W595 and
W902 series added

2008-09-09 Version R26A 26th edition. Information about G705 series
added

2008-10-17 Version R26B 26th revised edition. Minor changes.
New document layout
11 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Contents

The Java ME platform ...15
Sony Ericsson Java platforms ...15

Phones not conforming to Sony Ericsson Java Platforms17
MIDP 2 support ...17
MSA (JSR-248) ..18
WMA (JSR-120) ...18
WMA 2.0 (JSR-205) ..19
MMAPI (JSR-135) ...20

Audio support ..20
Video support ..21

Advanced Multimedia Supplements
(JSR-234) ...22

JSR-234 support in JP-7 phones ..22
JSR 234 support in JP-8 phones ..23

3D APIs ..24
PDA optional packages (JSR-75) ..24

PIM optional package ..24
File Connection optional package ...25

Bluetooth API (JSR-82) ...25
Java ME Web Services 1.0 (JSR-172) ...26
SIP (Session Initiated Protocol) API

(JSR-180) ...26
Scalable 2D Vector Graphics API for J2ME (JSR-226) ..26
Payment API (JSR-229) ..27
Mobile Internationalisation API (JSR-238) ...27
Java Bindings for OpenGL® ES API

(JSR-239) ..28
Security and Trust API (JSR-177) ..28
Location API (JSR-179) ...29
Content Handler API (JSR-211) ..29
Mobile sensor API (JSR-256) ..29
Memory ...30
The navigation key ..30
Simultaneous key presses ..30
Command types ..31

Phones with two selection keys ..32
Phones with three selection keys ..32

Error messages ...33
Sony Ericsson SDK for the Java™ ME Platform ...34
Security policy for Sony Ericsson phones ...35

Security Configuration ...35
Download and installation ...38
Appendix A

Phone specifications ..40
Screen and memory specifications ...41
Java specifications ..44
Camera specifications ...48
Font sizes ..50

Key mapping ..51
Appendix B
12 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Java programming issues ..55
Hints for developing MIDlets ...56

Writing efficient applications ...56
Low-level MIDP user interface ...56

Memory usage ...57
Java heap ..57
Video RAM areas ...58

Retrieving the IMEI number ...59
Minimising and maximising MIDlets ..59

Multitasking MIDlets ..59
Adding events in the Activity menu from a MIDlet ..60

Standby MIDlets ..61
Autostarting MIDlets ..61
Network APIs ...61

Network API features ...62
HTTP 1.1 implementation ..62
Secure sockets and HTTPS connections ..63

JAD/manifest attributes ...63
Vodafone JAD attributes ..64

Serial Port Communications (from JP-7) ...64
JSR-75 implementation ...66

PIM API ..66
File Connection API ...69

Video overlay ...71
Video rotation/mirroring ..72

Video rotation/mirroring during playback ..72
Tips for using the JSR-82 ..73

Local device ...73
Device discovery ...73
Games ...74
Managing connections between Bluetooth SDP records and a game server74

The accelerometer sensor in JP-8 phones ...74
JSR-211 content handlers ..75

JSR-211 Walkman® player content handler ...75
JSR-211 interaction with browser ...75
JSR-211 Shortcut launcher ...76

Querying system properties ..78
Supported classes ...78
System.getProperty(String Key) calls ..78
Bluetooth Local device properties (JSR-82) ..82
Implementation specific properties in JSR-184 ..82

Knowledge base ..83
Appendix C

Sony Ericsson SDK for the Java™ ME Platform ..86
Features ..87

Installing and updating the SDK ..87
Integrating the Sony Ericsson SDK for the Java™ ME Platform in NetBeans 588
Integrating the Sony Ericsson SDK for the Java™ ME Platform in Eclipse and JBuilder 2007 89
Appendix D

Sony Ericsson Mobile JUnit ...92
Mobile JUnit features ..93
Installing Mobile JUnit ...93
The sample project test ...94

Running the test ..94
Test suites ...96
13 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
On-device testing on a Sony Ericsson phone ...97
Configuring and running mobile tests ...98

Default values ..101
Using ANT to run mobile tests ..102
Compiling a standalone test MIDlet ..103
Configuring Eclipse and EclipseME for mobile test development103
Using JUnit to run mobile tests ...104

Links and references ..106
Specifications ..106
The Java ME platform ..107
3D developer tools/plugins ..107

Index ...108
14 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
The Java ME platform

The phones covered in this document support the MIDP 2.0 and CLDC 1.1 specifications. From
Sony Ericsson Java Platform JP-8 the MIDP 2.1 maintenance release is supported.

The basic MIDP 2.x features, such as life cycle, memory handling etc, are the same as for the MIDP 1.0
environment. More information about MIDP 1.0 in Sony Ericsson phones is available at Sony Ericsson
Developer World. MIDP 1.0 applications developed for the T61x, T628/T630, and Z60x phones should
also execute on Sony Ericsson MIDP 2.x supported phones.

Sony Ericsson Java platforms

Sony Ericsson uses a platform approach to Java implementation allowing developers to focus on a
platform rather than on a variety of different product names. Two platform branches exist, supporting
Symbian (SJP) and non-Symbian (JP) based phones respectively. The platforms are implemented through
an evolutionary approach in order to ensure forwards compatibility between platform versions. Normally
each platform version is used in several phone models.

A list of Sony Ericsson Java platform versions for the phones in this document can be found below. Some
platform features are optional, that is, configurable. For example, the Bluetooth™ APIs (JSR-82) are only
enabled for phones who actually support Bluetooth wireless technology.

JP = Sony Ericsson Java platform.

Note: All platforms are backwards compatible, which means that all JSRs (except the optional)
implemented on one platform are also implemented on all higher platforms.

Java Platform Features Optional features (JSR-82, JSR-
256, VSCL 2.0) and comments

JP-8.4
C905, G705

• Project Capuchin API
• JSR-256 extensions

JSR-82: All JP-8.4 phones
JSR-256: All JP-8.4 phones with
sensor(s)

JP-8.3
C702, C902, T700, W595, W760,

W902, W980, Z780

• Additional JSR-211
content handlers

• PIMChangeListener
API

• JSR-256 extensions
• Improved security

handling

JSR-82: All JP-8.3 phones
JSR-256: All JP-8.3 phones with
sensor(s)
15 October 2008

http://developer.sonyericsson.com
http://developer.sonyericsson.com

Developers guidelines | Java™ ME, CLDC – MIDP 2
Note: JSR-184 and Mascot Capsule Ver.3 are not enabled in Z310 series.

JP-8 (includes JP-8.0 - JP-8.2)
G502, K630, K660, K850, V640,

W890, W910, Z750, Z770

JSR-211 JSR-82: All JP-8 phones
JSR-256: All JP-8 phones with sen-
sor(s)JSR-179

JSR-177

JSR-239

JSR-238

JSR-229

JSR-226

JSR-180

JSR-248 (MSA)

MIDP 2.1

JP-7
K550, K610, K770, K790, K800,

K810, S500, T650, W350, W380,
W580, W610, W660, W710, W830,

W850, W880, Z310, Z555, Z610,
Z710

JSR-234 (Camera capa-
bilities)

JSR-82: Not W380, Z310

JP-6
K310, K320, K510, W200, W300,

W550, W600, W810, W900, Z530,
Z550, Z558

JSR-205 JSR-82: Not K310, W200

JSR-172

JP-5
K600, K750, V600, W700, W800,

Z520, Z525

JSR-75 JSR-82: All JP-5 phones
VSCL 2.0: V600 only

JP-4
V800, Z800

VSCL 2.0: V800 only

JP-3
F500, J300, K300, K500, K700, S700,

Z500

JSR-184

Mascot Capsule Ver. 3

JP-2
Z1010

Nokia UI API 1.1

JSR-135

JSR-120

JTWI (JSR-185)

MIDP 2.0

CLDC 1.1

Java Platform Features Optional features (JSR-82, JSR-
256, VSCL 2.0) and comments
16 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Note: JSR-234 is not enabled in W350, W380, Z310 and Z555 series.

Phones not conforming to Sony Ericsson Java Platforms

The F305, J132, K330, R300, R306, S302, T280, T303, W302, Z250 and Z320 series do not fully conform
to any Sony Ericsson Java platform. The following JSRs are supported in these phones:

• MIDP 2.0 (JSR-118)
• CLDC 1.1 (JSR-139)
• JTWI (JSR-185)
• WMA (JSR-120)
• File API part of JSR-75
• PIM API part of JSR-75 is supported in the F305 series
• Parts of MMAPI (JSR-135), only audio and camera snapshots are supported.
• Mascot Capsule ver.3 is supported in the F305 series
• In F305 and R306 series also the Nokia UI API is supported.

MIDP 2 support

All phones covered in this document are MIDP 2.0 and JTWI 1.0 compliant. From JP-8, phones are
compliant with the MIDP 2.1 maintenance release.
For a list of protocols, formats, memory size, display size etc. supported by the MIDP 2 implementation in
the phones, see “Appendix A Phone specifications” on page 40, which contains technical specifications
for each phone.

The MIDP 2 specification contains a number of optional features of which the following are supported:

• PushRegistry Alarm and PushRegistry SMS. From JP-4 PushRegistry CBS is also supported.
• Signed MIDlets as specified in JTWI 1.0.
• TCP and UDP server sockets as specified in MIDP 2.
• PlatformRequest supports the tel, http and https schemes among others.

When the method is invoked with the tel scheme, the native phone application is accessed and the
user can initiate a voice or video call, or send a message to the given phone number.
A PlatformRequest invocation for http/https initiates downloading of the given URI, for example, a
Java application, image etc. For http/https URIs referencing WAP or Web pages, the Web browser is
invoked. The Java application is then left in the background until the phone call/download/Web
session is completed, after which it is resumed.
For information about other URI schemes supported, see Developers guidelines - Web browsing,
found at http://developer.sonyericsson.com/getDocument.do?docId=88004.

• GameCanvas.getKeyStatus() supports the detection of several simultaneous keys. See also
“Simultaneous key presses” on page 30.

• TextBox and TextField with input constraints ANY, EMAILADDR and URL support the character set
specified in JTWI 1.0.

• PNG images with colour depth of 1, 2, 4, 8, 16, 24 and 32 bits per pixel are supported.
• The maximum number of application-created threads is limited only by the amount of available

memory.
17 October 2008

http://developer.sonyericsson.com/getDocument.do?docId=88004

Developers guidelines | Java™ ME, CLDC – MIDP 2
• A TextBox or TextField object with input constraint TextField.PHONENUMBER allows the user to
select a phone number from the phonebook, as specified in JTWI.

• From JP-7 CommConnection is implemented, but it requires an AT command, AT*SEJCOMM, to open
a port before CommConnection can be used by a MIDlet.

• The Z558 series features a touchscreen, with support for writing recognition (in Chinese and English).
The standard pointer control methods of the MIDP Canvas class are supported for this series of
phones.

MSA (JSR-248)

Sony Ericsson JP-8 phones are compliant with the MSA (Mobile Service Architecture) specification,
available at http://www.jcp.org/en/jsr/detail?id=248.

The Java ME community has developed a unified Java application environment standard for mobile
phones as part of the Java Technology for the Wireless Industry (JTWI) initiative. JTWI (JSR-185) focused
on mobile devices with limited resources and capabilities, while the MSA Specification (JSR-248)
addresses an even broader set of devices with more enhanced and diverse capabilities but continues its
focus on high-volume mobile devices. MSA adds support for new technologies and features that are
already available or will become available in the foreseeable future. It also oversees compatibility with the
old JTWI environment and with the future MSA Advanced environment defined by the Mobile Service
Architecture Advanced activity (JSR-249). The MSA Specification defines a set of Java ME technologies
and shows how these technologies have to be correctly integrated in a mobile device to create an optimal
mobile Java platform.

The MSA Specification consists of the following main logical elements:

• Mandatory and Conditionally Mandatory Component JSRs.

• Additional Clarifications. Each component JSR is accompanied by additional clarifications to remove
possible problems with the interpretation of component JSRs and minimise optionality.

• Additional Requirements related to JTWI, security, supported content formats, and so on. Additional
requirements are also specified to improve backwards compatibility, interoperability, and predictability of
MSA compliant implementations.

• Recommendations and Guidelines.

• Roadmap aiming to describe the future view of the mobile Java platform.

WMA (JSR-120)

The Wireless Messaging API v 1.1 (JSR-120) is supported. GSM SMS is supported in all phones covered
in this document, while GSM Cell Broadcast (CBS) is only supported on JP-4 and higher. MIDP 2.0
security has been added to the Open connection, Send and Receive functions, as specified in WMA 1.1,
http://www.jcp.org/en/jsr/detail?id=120.
18 October 2008

http://www.jcp.org/en/jsr/detail?id=248
http://www.jcp.org/en/jsr/detail?id=120

Developers guidelines | Java™ ME, CLDC – MIDP 2
The Sony Ericsson SDK for the Java™ ME platform provides support for developing WMA MIDlets. This
includes API documentation, support for compiling WMA MIDlets and debugging these MIDlets using any
of the phones covered in this document.

Per Appendix A, “GSM SMS Adapter”, of the WMA specification, implementations of the GSM SMS
adapter must support at least three concatenated short message segments. The phones covered in this
document exceed this minimum requirement, allowing MIDlets to send and receive SMS messages of up
to ten segments in length.

The 3GPP specification for SMS specifies the port numbers 16000-16999 as available for applications. It
is recommended that Java developers use non-reserved port numbers within this range. WMA has a
system list of restricted port numbers which may not be used by Java applications. In addition to the port
numbers restricted in the WMA specification, the phones covered in this document also reserve the ports
listed in the table below. If a Java application attempts to use any of the restricted and/or reserved ports,
an exception will be thrown.

WMA 2.0 (JSR-205)

Note: The JSR-205 API is supported on JP-6 and higher platforms.

The Wireless Messaging API 2.0 is an extension and enhancement of WMA (JSR-120). GSM SMS, GSM
Cell Broadcast (CBS), and MMS are supported.

WMA 2.0 is based on the Generic Connection Framework (GCF), which is defined in the Connected
Limited Device Configuration (CLDC) 1.0 specification. The package javax.microedition.io defines
the framework and supports input/output and networking functionality in Java ME profiles.

Port number Description

0 Internal system use

650 General obex

2948-2949 WAP

5505 PM ringtone (Nokia Smart Messaging)

5506 PM Logo (Nokia Smart Messaging)

5507 PM Icon (Nokia Smart Messaging)

5514 Picture message (Nokia Smart Messaging)

9200-9207 WAP

16733 Calendar

16987 Email notification

16988 Email account setting

49996-49997 WAP provisioning

49999 WAP provisioning
19 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
The JSR-205 specification can be downloaded from http://www.jcp.org/en/jsr/detail?id=205.

Note: Sending DRM protected files as message parts is not supported in the Sony Ericsson
implementation of the JSR-205 API.

MMAPI (JSR-135)

The MMAPI support in the phones in this document provides access to audio and video playback, as well
as image capture with the phone camera. For a list of supported data formats for each phone, see “Java
specifications” on page 44. The JSR-135 specification can be downloaded from
http://www.jcp.org/en/jsr/detail?id=135.

Players can be created from:

• Java streams
• DataSources
• URIs with “http://”, “https://”, “rtsp://” or “capture://video”. From JP-8 also URIs with “device://tone”,

“capture://audio”, “capture://audio_video”, “capture://radio” and “device://midi”.
System.getproperty(....) calls can be used to retrieve supported parameters/values in specific
phones. See “MMAPI system properties” on page 81 for more information.

Note: With JP-8.x phones, it is strongly recommended not to use GameCanvas with MMAPI, Canvas
should be used instead.

Audio support

See also “Java specifications” on page 44.

In JP-2 and JP-3, a maximum of 16 audio players can exist at the same time in Started state at the Java
level. The number of players that can produce audio in parallel is limited by the phone hardware. Simple
tones can be generated in parallel to any of the supported audio formats, but no other parallel audio
playback is supported.

From JP-4 the number of simultaneously started players is limited only by available memory. These
phones also support more advanced mixing. In JP-4 and JP-5, one player can play a waveform audio file
(.WAV or ADPCM) with a sample rate of 8 or 16 kHz in parallel to another player playing a MIDI file.
In JP-7 and JP-8 up to 4 parallel players are supported, either 4 waveform players (AMR, WAV or ADPCM)
or 3 waveform players and 1 player playing a MIDI file.

The MidiControl, supported from JP-5, allows control of a maximum of 16 MIDI channels when playing
MIDI.

The following controls are implemented:

• VolumeControl
• ToneControl
• StopControl
20 October 2008

http://www.jcp.org/en/jsr/detail?id=205
http://www.jcp.org/en/jsr/detail?id=135

Developers guidelines | Java™ ME, CLDC – MIDP 2
• MetaDataControl (from JP-6)
• MIDIControl (from JP-5)
• PitchControl (from JP-6)
• TempoControl (from JP-7)
• RateControl (from JP-7).

Phones on JP-6 and higher (except W350, W380, Z310 and Z555) support audio recordings in the
MMAPI.

Supported Audio codecs for recordings:

• PCM : 16KHz - 256kb/s
• AMR (NB) : 8KHz - 128b/s

Video support

See also “Java specifications” on page 44.

Note: Video playback is not supported in JP-2 phones and in W350, W380, Z310 and Z555 series.

Only one video player can exist at a particular time. The video player can display its contents in a Canvas
or in an Item on a Form.

The snapshot functionality is only supported for taking a picture with the built-in camera of the phone.
Access to the camera snapshot functionality follows the security policy specified in JTWI.

Video recordings from the main camera (that is, not the video call camera) is supported on JP-7 and
higher, except for the W350, W380, Z310 and Z555 series.

Supported video recording containers and codecs:

• JP-7 to JP-8.2:
3GP Container
Video: H.263 (176x144) ~9FPS 60Kbps
Audio: AMR (NB) 8KHz

• JP-8.3 and higher:
3GP container
Video: Mpeg4 (320x240)
Audio: AAC

When a phone call is received while running a Java application that uses the native camera, the Java
reference to the native camera is released. Once the phone call is terminated, the application will regain
focus and an END_OF_MEDIA_EVENT is sent to the application. It is then up to the application whether to
restart the camera or not.

The following controls are implemented:

• VideoControl
• FramePositionControl (from JP-7) allows precise positioning of a video frame for the player.
21 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Advanced Multimedia Supplements
(JSR-234)

Note: Phones on JP-7 and higher, except W350, W380 and Z310, support the JSR-234 API. For
information about the implementation of JSR-234 in JP-7 and JP-8 phones, see below.

Advanced Multimedia Supplements (AMMS) builds on the framework already established in the Mobile
Media API (MMAPI) (JSR-135). AMMS adds many new controls and extensions to the MMAPI framework.

The full JSR-234 specification can be downloaded from http://www.jcp.org/en/jsr/detail?id=234

JSR-234 support in JP-7 phones

In Sony Ericsson JP-7 phones, the following classes/interfaces for extended camera and image handling
functionality are implemented:

• javax.microedition.amms.control.FormatControl

• javax.microedition.amms.control.ImageFormatControl

• javax.microedition.amms.control.camera.CameraControl
All methods supported, except getCameraRotation()

• javax.microedition.amms.control.camera.ExposureControl
Not supported: setExposureTime(), getExposureTime(), getExposureValue(), getFStop
and setFStop()

• javax.microedition.amms.control.camera.FocusControl.
Only supported in K790, K800 and K810.
No support for “servo focus”, that is, focus does not change automatically when the motive changes.
Macro focusing is supported.
Manual focusing is not supported.
To utilise auto focusing:
To focus, call FocusControl.setFocus(FocusControl.AUTO), and the camera focuses on the
object currently in the viewfinder. An ongoing focusing procedure can be interrupted by calling
FocusControl.setFocus(FocusControl.AUTO_LOCK). If the camera has already locked focus on
an object, FocusControl.setFocus(FocusControl.AUTO_LOCK) releases the focus, so that a
new focusing procedure can be started.

• javax.microedition.amms.control.camera.SnapshotControl

• javax.microedition.amms.control.camera.ZoomControl
Only supported in K790, K800 and K810.

• No support for optical zoom features. All digital zoom features are supported.
getMinFocalLength() is not supported

• javax.microedition.amms.control.camera.FlashControl
22 October 2008

http://www.jcp.org/en/jsr/detail?id=234

Developers guidelines | Java™ ME, CLDC – MIDP 2
• javax.microedition.amms.GlobalManager

JSR 234 support in JP-8 phones

Camera
• javax.microedition.amms.control.ImageFormatControl

• javax.microedition.amms.control.camera.CameraControl

• javax.microedition.amms.control.camera.ExposureControl

• javax.microedition.amms.control.camera.FocusControl

• javax.microedition.amms.control.camera.SnapshotControl

• javax.microedition.amms.control.camera.ZoomControl

• javax.microedition.amms.control.camera.FlashControl

Radio
• javax.microedition.amms.control.TunerControl

• javax.microedition.amms.control.RDSControl

Audio effects
• javax.microedition.amms.control.audioeffect.EqualizerControl

• javax.microedition.amms.control.audioeffect.ReverbControl

Audio3d
• javax.microedition.amms.control.audio3d.LocationControl

• javax.microedition.amms.control.audio3d.OrientationControl

• javax.microedition.amms.control.audio3d.DistanceAttenuationControl

• javax.microedition.amms.Spectator

• javax.microedition.amms.GlobalManager

• javax.microedition.amms.SoundSource3D

Image encoding
• javax.microedition.amms.MediaProcessor

A MediaProcessor can be created for JPEG and raw images.

• javax.microedition.amms.control.ImageFormatControl
The JPEG format is supported.
23 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Image post processing
• javax.microedition.amms.control.imageeffect.ImageEffectControl

ImageEffectControl is supported for the MediaProcessor

• javax.microedition.amms.control.imageeffect.ImageTransformControl
ImageTransformControl is supported for the MediaProcessor

• javax.microedition.amms.control.imageeffect.OverlayControl
OverlayControl is supported for the MediaProcessor

3D APIs

Note: JP-2 phones and Z310 series do not support the 3D APIs.

Phones on JP-3 and higher (except the Z310) support real-time 3D graphics rendering. These platforms
support two different 3D graphics APIs, Mascot Capsule Micro3D version 3 and Mobile 3D Graphics API
for J2ME (JSR-184). For more information on the implementation of the 3D APIs, see the Developers
guidelines “3D graphics with Java ME”, available at www.sonyericsson.com/developer/java.

PDA optional packages (JSR-75)

Note: Only phones on JP-5 and higher support the JSR-75 API. F305, J132, K330, R300, R306, S302,
T280, T303, W302, Z250 and Z320 support the File API part of JSR-75.

The PDA optional packages for Java ME (JSR-75) consist of two separate APIs, one for accessing PIM
data and one for file system access.

PIM optional package

The PIM (Personal Information Management) API is standardised in the JSR-75 specification, which can
be downloaded from http://www.jcp.org/en/jsr/detail?id=75. The following describes shortly the
implementation in the Sony Ericsson phones where the API is supported.

In Sony Ericsson phones the PIM API handles:

• Contacts (ContactList)
• Calendar (EventList)
• Tasks (ToDoList).

For more details on the Sony Ericsson implementation of the PIM package, see “Appendix B Java
programming issues” on page 55.
24 October 2008

www.sonyericsson.com/developer/java
http://www.jcp.org/en/jsr/detail?id=75

Developers guidelines | Java™ ME, CLDC – MIDP 2
File Connection optional package

The File Connection API is standardised in the JSR-75 specification, which can be downloaded from
http://www.jcp.org/en/jsr/detail?id=75. The following describes shortly the implementation in the
Sony Ericsson phones where the API is supported.

In general, Java applications can access the same folders, subfolders and files as the built-in File manager
application, both in phone internal memory and on an inserted memory card. The following folders and all
contained subfolders and files are accessible via the API:

• <file:///c:/> (internal memory file root)
• <file:///c:/other/>
• <file:///c:/pictures/>
• <file:///c:/sounds/>
• <file:///c:/videos/>
• <file:///e:/> (memory card file root)
• <file:///e:/dcim/> (camera pictures folder on memory card).

Note: The folders Games, Themes, Applications and Webpage are not available via the File Connection
API.

Note: Which folders are accessible via the File Connection API differ between phone models. For
example, in JP-7 and JP-8 phones, there is a Camera folder in phone internal memory, <file:///c:/camera>,
and the Themes and Webpage folders on memory card are accessible.
The PDAPDemo application supplied with the Sony Ericsson SDK for the Java ME platform is
recommended to find out exactly which folders are accessible in internal memory and installed memory
card of a specific phone model.

For more details on the Sony Ericsson implementation of the package, see Appendix B, “JSR-75
implementation” on page 66.

Bluetooth API (JSR-82)

See also “Java specifications” on page 44.

JP-5 and higher phones support JSR-82, the standard Java API for Bluetooth, as an optional feature. It
provides the means for developers to create Bluetooth games and other applications as well as implement
new Bluetooth profiles.

For example, the Bluetooth API offers developers the ability to:

• Create multiplayer games
• Connect to PCs from Java applications.

The complete JSR-82 specification can be downloaded from the Java Community Pages,
http://www.jcp.org/en/jsr/detail?id=82

Note: JSR-82 v1.1, except the Push Registry features, is supported from JP-7.4, JSR-82 v1.0a is
supported in JP-5, JP-6 and JP-7.0 – JP-7.3 phones.
25 October 2008

http://www.jcp.org/en/jsr/detail?id=82
http://www.jcp.org/en/jsr/detail?id=75

Developers guidelines | Java™ ME, CLDC – MIDP 2
Java ME Web Services 1.0 (JSR-172)

Note: The JSR-172 API is only supported on the JP-6 platform and higher.

The JSR-172 contains two independent, optional packages, both supported:

• Java ME XML Parser
• Java ME RPC, which facilitates access to XML based Web services from CDC and CLDC based

profiles.

The complete JSR-172 specification can be downloaded from the Java Community Pages,
http://www.jcp.org/en/jsr/detail?id=172

SIP (Session Initiated Protocol) API
(JSR-180)

Note: The JSR-180 API is only supported on the JP-8 platform.

JSR-180 is a Java ME Optional Package that enables resource limited devices to send and receive SIP
messages. The API is designed to be a compact and generic SIP API, which provides SIP functionality on
transaction level. The API is integrated into the Generic Connection Framework defined in Connected
Limited Device Configuration (CLDC).

JSR-180 can be used in two different modes, dedicated mode and shared mode. For a MIDlet using
dedicated mode, settings are handled by the MIDlet itself. MIDlets that use shared mode share the same
settings. JP-8.0 and JP-8.1 phones only support dedicated mode. From JP-8.3 both modes are
supported. On these phones, shared SIP settings are found by selecting Settings - Connectivity - SIP
settings from the phone menu.

The complete JSR-180 specification can be downloaded from the Java Community Pages,
http://www.jcp.org/en/jsr/detail?id=180

Scalable 2D Vector Graphics API for J2ME
(JSR-226)

Note: The JSR-226 API is only supported on JP-8.x platforms.

JSR-226 is a small package that is closely aligned towards capabilities of the SVG Tiny format and
designed to meet the need for a Mobile 2D Graphics (M2G) API. M2G provides support for loading and
displaying SVG Tiny files, manipulating SVG Tiny content and creating SVG Tiny content, such as dynamic
data-driven graphics.
26 October 2008

http://www.jcp.org/en/jsr/detail?id=180
http://www.jcp.org/en/jsr/detail?id=172

Developers guidelines | Java™ ME, CLDC – MIDP 2
M2G is built upon a subset of SVG Micro DOM (uDOM) corresponding to SVG Tiny 1.1, itself a subset of
SVG and XML DOM for SVG Mobile (Tiny and Basic profiles). It is extended with javax.microedition.m2g
for usage with the Java ME platform.

M2G consists of four basic packages, all supported on the Sony Ericsson JP-8 platform:

• javax.microedition.m2g
• org.w3c.dom
• org.w3c.dom.svg.events
• org.w3c.dom.svg

The complete JSR-226 specification can be downloaded from the Java Community Pages,
http://www.jcp.org/en/jsr/detail?id=226

Payment API (JSR-229)

Note: The JSR-229 API is only supported on the JP-8 platform.

The Payment API specification defines an optional package for the Java ME Platform. It specifies the
architecture and associated APIs that enables an open, third party, application development environment
for payment transactions.

The complete JSR-229 specification can be downloaded from the Java Community Pages,
http://www.jcp.org/en/jsr/detail?id=229

Mobile Internationalisation API (JSR-238)

Note: The JSR-238 API is only supported on the JP-8 platform.

The Mobile Internationalisation API is a Java ME Optional Package containing an application program
interface that allows MIDP application developers to internationalise their applications.

Internationalisation is a prerequisite to localisation, both very important in multilingual software
development. The API provides the locale-specific formatting of dates, times, numbers (including
percentages) and currency amounts. It is also possible to construct messages that have a variable
number of ordered parameters.

The API also defines a mechanism to retrieve application-specific and device-specific resources, and
provides services for the locale-specific collation (sorting) of strings.

All classes in this API are in a single package:

• javax.microedition.global
27 October 2008

http://www.jcp.org/en/jsr/detail?id=226
http://www.jcp.org/en/jsr/detail?id=229

Developers guidelines | Java™ ME, CLDC – MIDP 2
The complete JSR-238 specification can be downloaded from the Java Community Pages,
http://www.jcp.org/en/jsr/detail?id=238

Java Bindings for OpenGL® ES API
(JSR-239)

Note: The JSR-239 API is only supported on the JP-8 platform.

JSR-239 defines an optional package, implemented on the CLDC 1.1/MIDP 2 platform.

The OpenGL® ES and EGL APIs are defined by the Khronos Group (www.khronos.org). OpenGL ES
defines two profiles: the Common profile and the Common-Lite profile. The Common-Lite profile is a 32-
bit fixed-point profile, while the Common profile supports floating point. The Common profile is a superset
of the Common-Lite profile. The JSR-239 specification provides bindings to the Common profile
(including all fixed-point functions).

Sony Ericsson JP-8 phones fully support OpenGL and EGL version 1.0.

The complete JSR-239 specification can be downloaded from the Java Community Pages,
http://www.jcp.org/en/jsr/detail?id=239

Security and Trust API (JSR-177)

Note: The JSR-177 API is only supported on the JP-8 platform.

The JSR-177 specification defines optional packages for the Java ME Platform. The purpose of this JSR is
to specify a collection of APIs that provides security and trust services by integrating a Security Element
(SE). A SE, a component in a Java ME device, provides the following benefits:

• Secure storage to protect sensitive data, such as user private keys, public key (root) certificates, service
credentials, personal information, and so on.

• Cryptographic operations to support payment protocols, data integrity, and data confidentiality.

• A secure execution environment to deploy custom security features. Java ME applications would rely on
these features to handle many value-added services, such as user identification and authentication,
banking, payment, loyalty applications, and so on.

A Security Element can be in a variety of forms. Smart cards, for example SIM cards in GSM phones and
UICC cards in 3G phones, are commonly used to implement a SE. In GSM networks, the network operator
enters the network authentication data on the SIM card, as well as the personal information of the
subscriber. When the subscriber inserts the SIM into a mobile handset, the handset is enabled to work on
the operator network.
28 October 2008

http://www.jcp.org/en/jsr/detail?id=238
http://www.jcp.org/en/jsr/detail?id=239
www.khronos.org

Developers guidelines | Java™ ME, CLDC – MIDP 2
The complete JSR-177 specification can be downloaded from the Java Community Pages,
http://www.jcp.org/en/jsr/detail?id=177

Location API (JSR-179)

Note: The JSR-179 API is only supported on the JP-8 platform, and only in phones with a built-in GPS
unit.

The JSR-179 specification defines a Java ME Optional Package that enables mobile location-based
applications for resource limited devices. The API is designed to be a compact and generic API that
produces information about the present geographic location and orientation of the phone and accesses a
database of known landmarks stored in the phone.

The javax.microedition.location package contains the basic classes needed to request and get a
location result.

The complete JSR-179 specification can be downloaded from the Java Community Pages,
http://www.jcp.org/en/jsr/detail?id=179

Content Handler API (JSR-211)

Note: The JSR-211 API is only supported on the JP-8 platform.

The Content Handler API and execution model let an application invoke registered Java ME and non-Java
applications by URL, by content type, or by content handler application id. The application can use
actions provided by the handler to get a specific display or use of the content handler. For example, a
MIDP MIDlet can be registered to handle the MIME type image/png and then request the handler to
display the image. The handler can provide multiple actions that affect how the content is displayed,
modified, or returned. The execution model leverages the application management software (AMS) of the
phone to provide a smooth user experience, to control the execution of the applications, to conserve
resources, and to enforce the security policy of the phone and the Java runtime.

For information about Content handlers implemented in Sony Ericsson phones, see “JSR-211 content
handlers” on page 75

The complete JSR-211 specification can be downloaded from the Java Community Pages,
http://www.jcp.org/en/jsr/detail?id=211

Mobile sensor API (JSR-256)

Note: The JSR-256 API is only supported on the JP-8 platform.
29 October 2008

http://www.jcp.org/en/jsr/detail?id=179
http://www.jcp.org/en/jsr/detail?id=177
http://www.jcp.org/en/jsr/detail?id=211

Developers guidelines | Java™ ME, CLDC – MIDP 2
JSR-256, Mobile Sensor API allows Java ME application developers to fetch data easily and uniformly
from sensors. A sensor is any measurement data source. In Sony Ericsson JP-8 phones JSR-256 support
for reading data from different types of sensors may vary between phone models, for example, in the
K850 only accelerometer sensor values can be read. The API provides means to monitor measured data.
The current API implementation in Sony Ericsson phones does not provide any methods to control a
sensor; it only provides methods for receiving information from a sensor.

This API has only limited compile/runtime support in the SDK, for example, the SensorManager class,
findSensors(...) method returns an empty array of SensorInfo[].

The classes and interfaces of this API are defined in the package javax.microedition.sensor.

The complete JSR-256 specification can be downloaded from the Java Community Pages,
http://www.jcp.org/en/jsr/detail?id=256

Memory

The phones covered in this document utilise a number of different memory areas for user interface
features, and for images in particular. The total amount of memory available varies depending on how
much of this memory other native phone applications have currently allocated. If needed, and if memory is
available, the Java heap grows dynamically up to about 30 MB in the latest phone models. In general, a
Java application with around 500 kB of image data is executable.

For more information about memory in different phones, see “Java specifications” on page 44. More
information about memory allocation can be found in Appendix B, “Memory usage” on page 57.

The navigation key

The phones covered in this document detect navigation key actions in the following manner:

• Two adjacent directions are simultaneously detected. If the navigation key is pressed in one of the four
main directions, up, down, left or right, one event is delivered to the application. If the navigation key is
pressed in a diagonal direction, two events are delivered to the application, for example, one for “up”
and one for “right”

• Navigational changes are detected directly without having to go back to neutral position.

Simultaneous key presses

Support for simultaneous key presses enhances gaming experience. For example, a user playing a game
can move around on the screen and shoot at the same time.
30 October 2008

http://www.jcp.org/en/jsr/detail?id=256

Developers guidelines | Java™ ME, CLDC – MIDP 2
Most Sony Ericsson phones support simultaneous key presses. However, a MIDP developer can not take
for granted that a certain phone model supports simultaneous key presses in all possible combinations.
Games and other applications should always be tested with the actual targeted hardware. Hardware
emulators does not necessarily emulate simultaneous key presses properly.

In general, when two keys are pressed at the same time, the proper events are delivered to the
application. When three or more keys are pressed in some combinations, extra key presses may be
detected. In other combinations, a third key is not detected at all. The general approach when more than
two keys need to be detected at the same time, is to map the game keys (Fire, game A, game B, and so
on) to actions that might occur at the same time as two or more other key presses.

More specific information for the simultaneous key press functions can be found in Appendix A, “Key
mapping” on page 51.

Command types

All Sony Ericsson phones on the JP-2 to JP-7 platforms have two selection keys called Left Selection Key
(LSK) and Right Selection Key (RSK). The left selection key should be used for the “most likely action”,
that is, what the user usually wants to do. Additional actions or commands should be handled by the right
selection key. In addition to these keys, these phones have a designated key for back action. This key is
referred as the physical back key.

JP-8 phones use a three selection key layout; Left Selection Key (LSK), Middle Selection Key (MSK) and
Right Selection Key (RSK). The physical Back key has been removed on these phones. The middle
selection key should be used for the “most likely positive action”, for example, Select, Mark (an item) or
OK. The right selection key should be used for “negative actions”, for example, Back, Cancel or Exit.
“Positive actions” are handled with the left and middle selection key.

JP-8 phones also include “Send” and “End” keys where pressing the “End” key prompts the user to end
or minimise the active application.
31 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Phones with two selection keys

The MIDP commands defined by an application are displayed on either the left selection key, the right
selection key or they are placed in the “More” menu which is associated with the right selection key.
Command type BACK is always mapped to the back button of the phone. Command type OK is generally
mapped to the left selection key. It is recommended to always include BACK and OK commands. The
command types are prioritised in the following order (from higher to lower):

• OK
• ITEM
• SCREEN
• BACK
• CANCEL
• EXIT
• STOP
• HELP

If a command of type BACK exists it will be mapped to the back key of the phone. It is also recommended
to use the BACK command instead of the EXIT command for exiting the application, allowing the user to
press the back key of the phone to exit. This conforms to the normal behaviour of Sony Ericsson phone
applications.

Of all the remaining commands (excluding the one mapped to BACK) the one with the highest priority is
mapped to the left selection key. All other commands are mapped to the right selection key. If more than
one command is to be mapped to the right selection key, a “More” option is displayed and a list of the
commands appears when the user presses the right selection key.

Phones with three selection keys

Phones with three selection keys have no back key. However, when an application is running in the
foreground and the user presses the End key, the user is prompted to end or minimise the application.
This key action in JP-8 corresponds to the “long back” key action in JP-2 – JP-7 phones.

If an application uses the high-level UI and adds Command objects to the current Screen, the platform
places the commands on the correct selection key (as long as a logical type for the command is used).
The platform also emphasises the label of the middle selection key.

The command types are prioritised in the following order (from higher to lower).

Positive actions:

• OK
• ITEM
• SCREEN
√ ebim

Negative actions:

• STOP
• CANCEL
• BACK
32 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
• EXIT

Recommendations
Preloaded applications comply with the following recommendations at all times. For all other applications,
it is strongly recommend to use the following guidelines to maximise end user experience.

Recommendations:

• The positive action with highest priority should always be mapped to MSK. If more than one positive
action is required, the one with the highest priority is mapped to MSK and additional positive actions
are mapped to LSK. Positive actions are in priority order OK, ITEM, SCREEN and HELP. Positive
actions should never be mapped to RSK

• The negative action with highest priority should always be mapped to RSK. If more than one negative
action is required, the one with the highest priority is mapped to RSK and additional negative actions
are mapped to LSK. Negative actions are in priority order STOP, CANCEL, BACK and EXIT. Negative
actions should never be mapped to MSK.

• If more than one action are to be mapped to LSK, they are placed in an “Options” list.
• Commands should be consistently placed and used throughout the application.

Additional guidelines:

• The label for MSK should be emphasised, for example, by using a bold font and/or a larger font size.
• A Back icon should look similar to , and the size of the icon should be adapted to the screen size

the application is optimised for.

On Sony Ericsson Developer World an article can be found, giving examples on selection key layouts and
ten of the most common use cases for phones with three selection keys.
See http://developer.sonyericsson.com/site/global/newsandevents/latestnews/newsjune07/
p_2softkeylayout_k850w910z750.jsp.

Error messages

Java exceptions that are not handled by the active MIDlet are dealt with by the Java environment. The
following error messages are displayed to the user:

Java exception Error message displayed to user

java.io.IOException Network failure

javax.microedition.io.ConnectionNotFoundException Network failure

java.lang.ClassNotFoundException Invalid application

java.lang.OutOfMemoryError The application consumes too much memory

java.io.EOFException,
java.io.UnsupportedEncodingException,
java.io.UTFDataFormatException

Network data error
33 October 2008

http://developer.sonyericsson.com/site/global/newsandevents/latestnews/newsjune07/p_2softkeylayout_k850w910z750.jsp
http://developer.sonyericsson.com/site/global/newsandevents/latestnews/newsjune07/p_2softkeylayout_k850w910z750.jsp

Developers guidelines | Java™ ME, CLDC – MIDP 2
Sony Ericsson SDK for the Java™ ME
Platform

Development of Java applications for the phones covered in this document is supported by the
Sony Ericsson SDK for the Java™ ME Platform. This includes PC emulation based on a customised
version of the Wireless Toolkit from Sun. For example, screen size, colour depth and key inputs of the
phone are emulated.

The latest version of the Sony Ericsson SDK is available for download at
www.sonyericsson.com/developer/java.

For more information about the SDK, see “Appendix C Sony Ericsson SDK for the Java™ ME Platform” on
page 86.

javax.microedition.rms.RecordStoreFullException Application memory full

All other Exceptions or Errors Application error

Java exception Error message displayed to user
34 October 2008

www.sonyericsson.com/developer/java

Developers guidelines | Java™ ME, CLDC – MIDP 2
Security policy for Sony Ericsson phones

All of the phones described in this document comply with the JSR185 Java Technology for the Wireless
Industry (JTWI) specification and MIDP 2 recommended security policy. For a detailed description of the
installation and security rules, see Chapter 7, Security Policy for GSM/UMTS Compliant Devices of the
JSR-185 specification (http://www.jcp.org/en/jsr/detail?id=185). A number of APIs are categorised as
“restricted”. Usage can result in costs for the user (traffic charges), inappropriate use may potentially
affect the user data integrity or cause disturbance to other parties.

Security Configuration

The table below lists permissions per functionality and security domain in JP-8 phones. Permissions may
differ slightly from this on lower Java platforms. Default permissions are in bold characters.

Functionality/Domain Third party protection
domain (Untrusted
domain)

Identified third party
protection domain
(Trusted 3rd party
domain)

Network access No
Always Ask
Ask Once

No
Always Ask
Ask Once
Never Ask

javax.microedition.io.Connector.http
javax.microedition.io.Connector.https
javax.microedition.io.Connector.datagram
javax.microedition.io.Connector.datagramreceiver
datagram server (w/o host)
javax.microedition.io.Connector.socket
javax.microedition.io.Connector.serversocket server
socket (w/o host)
javax.microedition.io.Connector.ssl ssl

Application auto start No
Always Ask
Ask Once

No
Always Ask
Ask Once
Never Ask

javax.microedition.io.PushRegistry

Messaging No
Always Ask

No
Always Ask
Ask Once
Never Ask

javax.wireless.messaging.sms.send
javax.wireless.messaging.sms.receive
javax.microedition.io.Connector.sms
javax.wireless.messaging.cbs.receive (from JP-4)
javax.microedition.io.Connector.cbs (from JP-4)
35 October 2008

http://www.jcp.org/en/jsr/detail?id=185

Developers guidelines | Java™ ME, CLDC – MIDP 2
PIM and File Connection APIs
(Read/Write user data)

No
Always Ask
Ask Once
Never Ask

No
Always Ask
Ask Once
Never Askjavax.microedition.pim.ContactList.read

javax.microedition.pim.ContactList.write
javax.microedition.pim.EventList.read
javax.microedition.pim.EventList.write
javax.microedition.pim.ToDoList.read
javax.microedition.pim.ToDoList.write
javax.microedition.io.Connector.file.read
javax.microedition.io.Connector.file.write

Local connectivity No
Always Ask
Ask Once
Never Ask

No
Always Ask
Ask Once
Never Ask

Multimedia No
Always Ask
Ask Once

No
Always Ask
Ask Once
Never Ask

Platform request No
Always Ask

No
Always Ask

Payment No No
Always Ask
Ask Once
Never Ask

Location No
Always Ask
Ask Once

No
Always Ask
Ask Once
Never Ask

Landmark No
Always Ask
Ask Once

No
Always Ask
Ask Once
Never Ask

Smartcard No No
Always Ask
Ask Once
Never Ask

Functionality/Domain Third party protection
domain (Untrusted
domain)

Identified third party
protection domain
(Trusted 3rd party
domain)
36 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Note: AT&T have their own Java signing and permission process, which should be considered before pur-
chasing a signing certificate for applications to be installed on Sony Ericsson phones customised for
AT&T. For more information, see the AT&T developer site,
http://developer.att.com/developer/index.jsp?page=toolsTechDetail&id=11300213.

Note: Unsigned MIDlets are not allowed to:

• open datagram connections on ports 9200, 9201 or 9203
• open socket connections on ports 80, 443 or 8080
• open SSL connections on port 443.

The security domain is determined at installation as follows:

• If the MIDlet suite is unsigned, then it will be installed in the “Third party protection domain”.

• If the MIDlet suite was signed using a certificate granted by a trusted third party such as Verisign or
Thawte, then it will be installed in the “Identified third party protection domain”. Operators maintain
control of their certification process.

• A signed MIDlet suite is not installed if certificate verification fails, for example, when a MIDlet suite,
signed by one operator, is attempted to install on a phone issued by another operator. In other words,
operator signatures are not generic, but are specific to phones provided by each individual operator

The digital certificate embedded in the JAD and the signed JAR file are verified for authenticity and date
validity at install time according to chapter 4 of the JSR-118 specification
(http://www.jcp.org/en/jsr/detail?id=118). This assures data integrity and vendor identity.

Improved security handling implemented in JP-8.3 and higher
In a run-time permission dialog, the user is presented with the following options:

• When the user is not allowed to increase the permission level, only "Yes” and “No” options are
presented.

• When the user is allowed (according to spec) to increase the permission level, “Yes”, “No” and the
highest permission according to specification are presented as options, for example, “Yes”, “No” and
“Never ask”.

Authentication No No
Always Ask
Ask Once
Never Ask

Call Control No
Always Ask

No
Always Ask
Ask Once
Never Ask

Functionality/Domain Third party protection
domain (Untrusted
domain)

Identified third party
protection domain
(Trusted 3rd party
domain)
37 October 2008

http://www.jcp.org/en/jsr/detail?id=118
http://developer.att.com/developer/index.jsp?page=toolsTechDetail&id=11300213

Developers guidelines | Java™ ME, CLDC – MIDP 2
Certificates in Sony Ericsson phones
The table below lists “factory installed” root certificates in Sony Ericsson phone models/series. The table
is valid for the first released version of the different phones, later releases may in some cases contain
more certificates.

Download and installation

The typical distribution mechanism for MIDP applications is over the air (OTA) via WAP or HTTP. The JAD
and or JAR file(s) are accessible via the Internet and users may access either file. After downloading via
the phones Browser application, installation is automatic.

Note: MIDlet installation on Z250 and Z320 can be done only by transferring JAR/JAD files using the USB
mass storage functionality in the phone.

Note: When JAR files are downloaded OTA via a WAP gateway, the file size may be limited by the network
operator.

Phone model/series Certificates

UTI from GeoTrust
(Java Verified)

Verisign Thawte

Z1010

F500

J300, K300 • •

K500

K700

S700i, S700c

S710a • •

Z500 • •

V800 • •

C702, C902, C905, F305, G502,
G705, J132, K310, K320, K330, K510,
K530, K550, K600, K610, K630,
K660, K750, K770, K790, K800,
K810, K850, R300, R306, S302, T280,
T700, V600, V640, W200, W300,
W302, W350, W380, W550, W580,
W595, W600, W610, W660, W700,
W710, W760, W800, W810, W830,
W850, W880, W890, W900, W902,
W910, W980, Z250, Z310, Z320,
Z520, Z525, Z530, Z550, Z555, Z558,
Z610, Z710, Z750, Z770, Z780, Z800

• • •
38 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
In the case of a signed MIDlet, the user must access the JAD file, because the signature is in it. The JAD
file is read and the URL property in the file is used to access the JAR file. Transferring the JAR file via
Bluetooth, IR or serial/USB cable do not work, since these methods only work with unsigned MIDlets.

Signed MIDlets may also be installed using the correct JAD file with the Sony Ericsson SDK for the Java™
ME platform via the Device Explorer, ejava.exe command line tool or by right-clicking the file and selecting
the “Install on Device” option.

A signed MIDlet can be installed on a phone with no UTI root certificate, by removing the following JAD/
Manifest attributes and the corresponding values before installation:

• MIDlet-Certificate-1-1:
• MIDlet-Jar-RSA-SHA1:

A list of JAD attributes supported in MIDP 2 compliant Sony Ericsson phones can be found in Appendix B,
see “JAD/manifest attributes” on page 63.

Java applications can be installed on the memory card as well as in internal memory in phones with
memory cards from JP-4 and forward. Note: This is not possible in the S700 series.

To install a MIDlet on the memory card:

• Transfer the application files (JAR/JAD) to the directory \mssemc\media files\other in the phone file
system.

• From the phone main menu, select File manager (Data folder) and browse to the application in the
other directory. Select Install.
39 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Appendix A
Phone specifications

In this appendix the technical specifications are listed for the phones covered in this Developers guideline.

Note: market/customer variations in the specifications may exist.
40 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Screen and memory specifications

Screen sizes are specified as Width x Height (pixels).

a) In Java only 65,536 colours (16-bit colour depth) can be used.

b) Java applications can be installed on the memory card as well as in internal memory.
To install a MIDlet on the memory card:

• Copy the application files (JAD/JAR) to the directory \mssemc\media files\other in the phone file
system.

• From the phone main menu, select Data folder and browse to the application in the other directory.
Select Install.

Specification/Phone Z1010 K700 S700 F500, K500,
Z250, Z320,
Z500, Z520,
Z525

V800, Z800

Screen

Screen size 176x220 176x220 240x320 128x160 176x220

Fullscreen canvas size 176x220 176x220 240x320 128x160 176x220

Non fullscreen canvas
size

176x182 176x176 240x266 128x128 176x182

Pixel ratio (H:W) 1:1 1:1 1:1 1:1 1:1

Colour depth 65,536 (16-
bit)

65,536 (16-
bit)

262,144 (18-
bit) a

65,536 (16-
bit)

262,144 (18-
bit) a

Transparency Full (8-bit) alpha blending

Memory

Max. RMS size Limited only by the amount of available free storage.

Memory, storage 8 MB 40 MB 32 MB F500 10 MB
K500 10 MB
Z500 6 MB
Z250 10 MB
Z320 10 MB
Z520 16 MB
Z525 16 MB

V800 8 MB b

Z800 5 MB b

Note: The amount of memory available for Java applications depends on
the free amount of internal memory in the phone. Other contents, such as
pictures, video clips and themes, use the same memory pool

Java heap size 512 kB - 1.5 MB (dynamic, depending on available memory)

Max. JAR size Unlimited, but depending on available storage.

Native video RAM availa-
ble to Java

Approx. max 500 kB
41 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Screen and memory specifications - continued

Specification/Phone J300, K300 K310, K320,
W200, Z310,
Z530

K510, W300 K530, K550,
K600, K610,
K630, K750,
V600, V640,
W350, W380,
W550, W600,
W610, W660,
W700, W710,
W800, W810,
Z550, Z555,
Z558, Z610,
Z710

C702, C902,
C905, G502,
G705, K660,
K770, K790,
K800, K810,
K850, S500,
T650, T700,
W580, W595,
W760, W830,
W850, W880,
W890, W900,
W902, W910,
W980, Z750,
Z770, Z780

Screen

Screen size 128x128 128x160 128x160 176x220 240x320

Fullscreen canvas size 128x128 128x160 128x160 176x220 240x320

Non fullscreen canvas
size

128x110 128x128 128x128 176x176 240x266

Pixel ratio (H:W) 1:1 1:1 1:1 1:1 1:1

Colour depth 65,536 (16-
bit)

65,536 (16-
bit)

262,144 (18-
bit) a

262,144 (18-
bit) a

262,144 (18-
bit) a

Transparency Full (8-bit) alpha blending

Memory

Max. RMS size Limited only by the amount of available free storage.
42 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Memory, storage (max.
available)

8 MB K310 15 MB
K320 15 MB
W200 20 MB
Z310 14 MB
Z530 28 MBb

K510 28 MBb

W300 20 MBb
K530 16 MBb

K550 64 MBb

K600 37 MB
K610 64 MBb

K630 32 MBb

K750 34 MBb

V600 32 MB
V640 32 MBb

W380 14 MBb

W550 256 MB
W600 256 MB
W610 64 MBb

W660 16 MBb

W700 34 MBb

W710 10 MBb

W800 32 MBb

W810 21 MBb

Z550 20 MBb

Z558 18 MBb

Z610 64 MBb

Z710 10 MBb

W900:
470 MBb

C702, C902,
C905:
160 MBb

G705:
120 MBb

K790, K800,
K810, W830,
W850:
64 MBb

T650: 50 MBb

K850, W595,
W760, W910:
40 MBb

Z780: 35 MBb

G502, K660,
W890, Z750,
Z770: 32 MBb

K770, W580,
T700, W902:
24 MBb

W880:
16 MBb

S500: 12 MBb

W980: 8 GB

Note: The amount of memory available for Java applications depends on
the free amount of internal memory in the phone. Other contents, such as
pictures, video clips and themes, use the same memory pool

Java heap size JP-3, JP-5: 512 kB - 1.5 MB (dynamic, depending on available memory)
JP-6: 1.0 - 1.5 MB (dynamic, depending on available memory)
JP-7, JP-8.0 – 8.3: dynamic, limited by available phone memory, maximum
6MB
JP-8.4: dynamic, limited by available phone memory, maximum 30MB.

Specification/Phone J300, K300 K310, K320,
W200, Z310,
Z530

K510, W300 K530, K550,
K600, K610,
K630, K750,
V600, V640,
W350, W380,
W550, W600,
W610, W660,
W700, W710,
W800, W810,
Z550, Z555,
Z558, Z610,
Z710

C702, C902,
C905, G502,
G705, K660,
K770, K790,
K800, K810,
K850, S500,
T650, T700,
W580, W595,
W760, W830,
W850, W880,
W890, W900,
W902, W910,
W980, Z750,
Z770, Z780
43 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
a) In Java only 65,536 colours (16-bit) can be used.

b) Java applications can be installed on the memory card as well as in internal memory.
To install a MIDlet on the memory card:

• Copy the application files (JAD/JAR) to the directory \mssemc\media files\other in the phone file
system.

• From the phone main menu, select the Data folder and browse to the application in the other directory.
Select Install.

Java specifications

The table lists the Java characteristics of the phones covered in this document.

Max. JAR size Unlimited, but depending on available storage.

Native video RAM availa-
ble to Java

Approx. max 500 kB

Characteristic Support Comments

CLDC version 1.1

MIDP version 2.0, 2.1 from JP-8

Supported image formats:
GIF87a, GIF89a, JPEG, PNG v 1.0 (colour depth
1, 2, 4, 8, 16 bits per pixel), BMP v 3.x, WBMP
level 0

Networking:
secure sockets, http 1.1, https. TLS 1.0 is also
supported

See also “MIDP 2 support” on
page 17
Z250 and Z320 support only
GIF and JPEG formats.

Specification/Phone J300, K300 K310, K320,
W200, Z310,
Z530

K510, W300 K530, K550,
K600, K610,
K630, K750,
V600, V640,
W350, W380,
W550, W600,
W610, W660,
W700, W710,
W800, W810,
Z550, Z555,
Z558, Z610,
Z710

C702, C902,
C905, G502,
G705, K660,
K770, K790,
K800, K810,
K850, S500,
T650, T700,
W580, W595,
W760, W830,
W850, W880,
W890, W900,
W902, W910,
W980, Z750,
Z770, Z780
44 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Serial communication:
JP-7 and JP-8 phones implement the CommCon-
nection interface via the AT command port. The
AT command port must be set to transparent
mode with the AT*SEJCOMM AT command
before serial communication can proceed.

See also “Serial Port Commu-
nications (from JP-7)” on
page 64

JTWI (JSR-185)
compliant

Yes, Release 1

MMAPI (JSR-135) 1.1

Supported Audio Content types, playback:
• audio/midi - MIDI (GM, GML and SP-MIDI)
• audio/x-wav - WAV (PCM)
• audio/x-tone-seq - JSR-135 tone sequence
• audio/mpeg - MP3 (MPEG-1 layer 3, MPEG-2

layer 3, MPEG 2.5 layer 3)
• audio/imelody - iMelody
• audio/emelody - eMelody
• audio/amr - AMR
• audio/mp4a-latm - 3GP (MPEG-4 AAC LC)
• audio/x-pn-realaudio (.ra) - RealAudio®, ver. 8
• audio/x-ms-wma – Windows media audio.
Supported Audio formats, recording:
• PCM : 16KHz - 256kb/s
• AMR (NB) : 8KHz - 128b/s

See also “MMAPI (JSR-135)”
on page 20.

Note: Not all content types are
supported in all phones

Supported Video Content types, playback:
• video/mp4v-es - 3GP (MPEG-4 Visual Simple

Profile Level 0)
• video/h263-2000 - 3GP (H.263 Baseline Profile

0 Level 10)
• video/x-pn-realvideo (.rm) - RealVideo®, ver. 8
• GIF89a animations are supported from JP-6
• video/x-ms-wmv – Windows media video.
Supported video formats, recording:
• JP-7 to JP-8.2:

3GP Container
• Video: H.263 (176x144) ~9FPS 60Kbps
• Audio: AMR (NB) 8KHz

• JP-8.3 and higher:
3GP container
• Video: Mpeg4 (320x240)
• Audio: AAC

Note:
Video playback is not sup-
ported in JP-2 , W380, Z250,
Z310 and Z320 series

Note: Not all content types are
supported in all phones

Supported Image (Camera) Content types:
• image/jpeg - JPEG

See also “Camera specifica-
tions” on page 48

Note: The camera in W380
and Z310 series is not accessi-
ble from Java.

Characteristic Support Comments
45 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
AMMS (JSR-234) Extended camera and image handling functional-
ity. From JP-8 also extended audio features are
supported.

Note:
Only supported from JP-7
except W350, W380, Z310
and Z555.
See also “Advanced Multime-
dia Supplements (JSR-234)”
on page 22

WMA (JSR-120) 1.1 - GSM SMS See also “WMA (JSR-120)” on
page 18

WMA 2.0 (JSR-205) GSM SMS
GSM CBS
MMS

Note:
Only supported from JP-6

PDA optional pack-
ages for Java ME
(JSR-75)

Version 1.0

PIM API, supported package:
• Javax.microedition.pim
PIM API, supported classes/interfaces:
• Contact
• Event
• ToDo
• Serialisation methods on PIM items
• Serialisation of PIM items according to

vCard 2.1/vCalendar 1.0.

File connection API, supported package:
• javax.microedition.io.file.

Note: Only supported from
JP-5
Z250 and Z320 support only
the File Connection API part of
JSR-75

See also “PDA optional pack-
ages (JSR-75)” on page 24
and “JSR-75 implementation”
on page 66

Java Bluetooth API
(JSR-82)

Version 1.0a, from JP-7.4 version 1.1

Supported packages:
• javax.bluetooth
• javax.obex.

Supported connections:
• L2Cap (btl2cap://)
• Serial Port Profile (btspp://)
• Generic Object Exchange Profile (btgoep://)
• irdaobex (irdaobex://).

Not supported: Push Registry

Note:
Only supported from JP-5

See also “Bluetooth API (JSR-
82)” on page 25

Java ME Web Serv-
ices
(JSR-172)

Version 1.0

Supported packages:
• XML parsing
• XML Web services

Note:
Only supported from JP-6

Mobile Service Archi-
tecture, MSA
(JSR-248)

Version 1.00 Note:
Only supported from JP-8

Characteristic Support Comments
46 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
SIP API
(JSR-180)

MSA compliant implementation Note:
Only supported from JP-8

Scalable 2D Graph-
ics API (JSR-226)

MSA compliant implementation Note:
Only supported from JP-8

Payment AP!
(JSR-229)

MSA compliant implementation Note:
Only supported from JP-8

Mobile Internationali-
sation API (JSR-238)

MSA compliant implementation Note:
Only supported from JP-8

Java Bindings for
OpenGL ES API
(JSR-239)

MSA compliant implementation Note:
Only supported from JP-8

Security and Trust
API (JSR-177)

MSA compliant implementation Note:
Only supported from JP-8

Location AP!
(JSR-179)

MSA compliant implementation Note:
Supported from JP-8, except
early K850 and W910 series
phones.

Content Handler AP!
(JSR-211)

MSA compliant implementation Note:
Only supported from JP-8

Mobile Sensor AP!
(JSR-256)

Version 1.0 Note:
Only supported from JP-8
Which sensor types are sup-
ported varies between phone
models.

Java IR APIs No

Java Serial APIs No See also “Serial Port Commu-
nications (from JP-7)” on
page 64

OTA Recommended
Practice

Yes, MIDP 2 compliant

Debug interface KDWP

Numeric keys Yes (0-9, *, #)

8-way directional key
with select

Yes (navigation key) Note: 4-way directional key in
Z250 and Z320

Signed MIDlets Yes

TCP Sockets Yes

UDP Sockets Yes

Characteristic Support Comments
47 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Camera specifications

Note: In W380 and Z310, the camera is not available to Java APIs.

In the K530, K550, K600, K610, K750, K770, K790, K800, K810, K850, S700, V640, W580, W610, W660,
W700, W800, W810, W830, W850, W880, W900 and W910 the native camera application is designed for
taking pictures with the phone in horisontal position. When a snapshot is taken in a Java application, the
image is automatically rotated to match the image seen in the Java viewfinder.

Note: In the K600 and V600 series, only the video call camera is available for Java applications via
Manager.createPlayer("capture://video"). In all other phones, only the main camera can be
used for video capture from Java

Supported image types for a phone are obtained by calling
System.getProperty("video.snapshot.encodings")

The supported image types can be used in conjunction with the image sizes defined in the table below by
specifying a snapshot parameter string. For example:
videoControl.getSnapshot("encoding=jpeg&width=640&height=480");

Java applications are restricted to use the values listed in the table below, even if the camera itself
supports other image sizes.

Java 3D Mascot Capsule Micro3D version 3.
Mobile 3D Graphics API for J2ME (JSR-184) ver-
sion 1.0, version 1.1 is supported on JP-7.3 and
higher.

See also “3D APIs” on page 24

Note: Not supported in JP-2
and Z310

NokiaUI API Version 1.1

ARM® Jazelle®
technology support

Yes JP-2: No

Multitasking VM From JP-7: Yes

Image size (pixels)

Phone/series 100
x
60

160
x
120

320
x
240

288
x
352

640
x
480

1280
x
960

1280
x
1024

1632
x
1224

1600
x
1200

2000
x
1500

2048
x
1536

2592
x
1944

Z1010, K700, K500,
Z500, F500, K300

•

S700 •

V800, Z800 • • • • a

K750, W800, W700 • • • a • a

Characteristic Support Comments
48 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
a High resolution snapshots may not be possible to view in the Java application that took the picture,
because of limited memory. However, it is possible to take a snapshot in the application and then process
the created image object, for example, save it as a file in the file system of the phone.

b Resolution reported by System.getProperty("video.snapshot.encoding") in JP-7 phones.
This is the only resolution that can be used in VideoControl.getSnapshot() with JP-7 phones. The
other resolutions supported in these phones are available only through the JSR-234 interface
javax.microedition.amms.control.camera.CameraControl.

K600 •

V600 •

Z520, Z525 • • •

W550, W600 • • • a

W900 • • • a

W810 • • • • a

K770, K790, K800,
K810, T650

•b • a • a • a • a

C702, G705, T700,
W595, W760, W890,
W980

• • a • a • a • a

Z250 • •

K310, K320, W200,
W300, Z530

• • •

K510 • • • •a

Z320 • • •a

Z550, Z558 • • •a

K530, K610,S500,
W830, W850, W880

•b •a •a

G502, K550, T700,
W580, W595, W610,
W660, W710, Z610,
Z710, Z770, Z780

•b •a •a

K630, K660, V640,
W910, Z750

• •a •a

C902, C905, K850,
W902

• •a •a •a

Image size (pixels)

Phone/series 100
x
60

160
x
120

320
x
240

288
x
352

640
x
480

1280
x
960

1280
x
1024

1632
x
1224

1600
x
1200

2000
x
1500

2048
x
1536

2592
x
1944
49 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
From JP-8 the same resolutions are reported by
System.getProperty("video.snapshot.encoding") and
javax.microedition.amms.control.camera.CameraControl.

Font sizes

A font is specified by requesting a style, size and face. In Sony Ericsson phones, the style and size
attributes are supported, while the face attribute is ignored.

Note: Font attributes are only available for Java in the low-level UI (Canvas or GameCanvas objects).

Due to space restrictions, all styles are not supported for Chinese characters in all phones. Also in many
phones, the SIZE_LARGE attribute gives the same size as SIZE_MEDIUM.

Font heights in pixels (including line space) are listed below:

MIDP values Z1010 K700 S700 F500
K310
K320
K500
K510
W200
W300
Z250
Z310
Z320
Z500
Z520
Z525
Z530

J300
K300

K530
K550
K600
K610
K630
K750
V600
V640
V800
W350
W380
W550
W600
W610
W660
W700
W710
W800
W810
Z550
Z555
Z558
Z610
Z710
Z800

W900 K770,
T650
W880

C702
C902
C905
G502
G705
K660
K790
K800
K810
K850
S500
T700
W580
W595
W760
W830
W850
W890
W902
W910
W980
Z750
Z770
Z780

Western characters

SIZE_LARGE 22 px 22 px 26 px 20 px 15 px 22 px 26 px 28 px 26 px

SIZE_MEDIUM 18 px 18 px 22 px 15 px 13 px 18 px 22 px 24 px 22 px

SIZE_SMALL 15 px 15 px 18 px 13 px 9 px 15 px 18 px 20 px 18 px
50 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Note: In the SDK emulator, versions before 2.5.0, only Western font sizes are rendered correctly. Due to
variations in phone software, for example, different language packs installed, texts may be displayed
differently in the emulator than in the phone.

Note: From SDK v. 2.5.0, also Chinese fonts are supported in the emulator.

Key mapping

Sony Ericsson phones support the keyPressed(), keyReleased(), and keyRepeated() event
delivery methods in class Canvas.

Chinese characters

SIZE_LARGE 18 px 22px 26 px 15 px 15 px 22 px 26 px 28 px 26 px

SIZE_MEDIUM 18 px 22 px 26 px 15 px 15 px 22 px 26 px 24 px 22 px

SIZE_SMALL 15 px 18 px 22 px 13 px 13 px 18 px 22 px 20 px 18 px

Key Constant value MIDP key code Game action

4-way select up -1 UP

4-way select down -2 DOWN

4-way select left -3 LEFT

MIDP values Z1010 K700 S700 F500
K310
K320
K500
K510
W200
W300
Z250
Z310
Z320
Z500
Z520
Z525
Z530

J300
K300

K530
K550
K600
K610
K630
K750
V600
V640
V800
W350
W380
W550
W600
W610
W660
W700
W710
W800
W810
Z550
Z555
Z558
Z610
Z710
Z800

W900 K770,
T650
W880

C702
C902
C905
G502
G705
K660
K790
K800
K810
K850
S500
T700
W580
W595
W760
W830
W850
W890
W902
W910
W980
Z750
Z770
Z780
51 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
4-way select right -4 RIGHT

JP-2 – JP-7: 4-way select press
JP-8: Middle Selection Key (Soft
key)

-5 FIRE

* 42 KEY_STAR GAME_C

35 KEY_POUND GAME_D

0 48 KEY_NUM0

1 49 KEY_NUM1

2 50 KEY_NUM2 UP

3 51 KEY_NUM3

4 52 KEY_NUM4 LEFT

5 53 KEY_NUM5 FIRE

6 54 KEY_NUM6 RIGHT

7 55 KEY_NUM7 GAME_A

8 56 KEY_NUM8 DOWN

9 57 KEY_NUM9 GAME_B

Left Selection key (Soft key).
Only available in Fullscreen Can-
vas mode

-6

Right Selection key (Soft key).
Only available in Fullscreen Can-
vas mode

-7

C key (Clear) -8

Send key (JP-8 only) -10

Back key -11

Special keys
The following keys are special keys. For some of them only keyPressed is called, not keyReleased
and keyRepeated. Note that some of these special keys might not be possible to use, since they may
have some native functionality, for example, starting another application.

Power On/Off key
(JP-6 and higher only)

-12

Special gaming key A
(W600, W550, K800, K790, W850,
W830, K810 and W910 series
only)

-13

Key Constant value MIDP key code Game action
52 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
a This key is not present in all phone models and may be referred to with different names, depending on
what function it is used for in the UI of the phone. The name and function of the key may also be
customised for different operators.

Swivel position detection
On jack knife phones from JP-6 the Canvas.keyPressed() event delivery method can also be used to
detect changes of the swivel position:

• keyCode -32 is returned when the swivel is opened
• keyCode -33 is returned when the swivel is closed

Special gaming key B
(W600, W550, K800, K790, W850,
W830, K810 and W910 series
only)

-14

Operator key a JP-2 – JP-5: -10
JP-6 – JP-8: -20

Video call key a

(JP-6 and higher only)
-21

Media player (WALKMAN®) key a

(JP-6 and higher only)
-22

Play (media) buttona

(JP-6 and higher only)
-23

Camera key a

(JP-6 and higher only)
-24

Camera focus key a

(JP-6 and higher only)
-25

Camera, capture key a

(JP-6 and higher only)
-26

Lamp key a

(JP-6 and higher only)
-27

PTT (Push-To-Talk) key a

(JP-6 and higher only)
-28

Camera lense cover open a

(JP-6 and higher only)
-34

Camera lense cover close a

(JP-6 and higher only)
-35

Volume+ (Zoom+) key a

(JP-6 and higher only)
-36

Volume– (Zoom–)key a

(JP-6 and higher only)
-37

Key Constant value MIDP key code Game action
53 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Keycodes generated when opening or closing a clam-shell phone
On clam-shell phones from JP-6 the Canvas.keyPressed() event delivery method can also be used to
detect when the phone flip is opened or closed:

• keyCode -30 is returned when the phone flip is opened
• keyCode -31 is returned when the phone flip is closed

Keycodes generated when opening or closing a slider phone
On slider phones from JP-8 the Canvas.keyPressed() event delivery method can also be used to
detect when the phone is opened or closed:

• keyCode -43 is returned when the phone is opened
• keyCode -44 is returned when the phone is closed

Simultaneous keypress support (S700, Z500, Z1010)
Two keys pressed at the same time are properly detected. More than two simultaneous key presses can in
some combinations generate extra key press events. In some three key sequences, the third key is not
detected.

Simultaneous keypress support (F500, J300, K300, K500, K700)
Two keys pressed at the same time are properly detected. More than two simultaneous key presses can in
some combinations generate extra key press events. Pressing the navigation key in different directions
and pressing other keys at the same time works with key 5 (Fire), key 7 (Game A) and key 9 (Game B).
Using other keys together with the navigation key can generate false detections.

Simultaneous keypress support (JP-4 to JP-8 except W380 and Z310)
Two keys pressed at the same time are properly detected. More than two keys pressed simultaneously
works in most cases but some combinations of keys may generate extra key press events. Pressing the
navigation key and other keys at the same time works with key 0, key 1, key 3, key 7 (GAME A), key 9
(GAME B), key *(GAME C) and key # (GAME D).

Simultaneous keypress support (W380 and Z310)
Combinations of the 4-way select keys “up”, “down”, “left”, “right” and the “5” key (FIRE) are prioritised in
the key detection mechanisms of the W380 and Z310. Pressing one or two of the 4-way select keys, alone
or together with the “5” key, will always be properly detected, and return proper key codes with the
triggered key events.

All other key combinations with two or more simultaneously pressed keys can not be properly detected by
Java in the W380 and Z310.

Simultaneous keypress support (Z250 and Z320)
Two keys pressed at the same time are properly detected. More than two keys pressed simultaneously
may generate unpredictable key press events. The 4-way select keys are treated as any other keys.
54 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Appendix B
Java programming issues

This appendix contains some programming issues of interest for developers of Java MIDlets/applications
for Sony Ericsson phones.
55 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Hints for developing MIDlets

Information specific for developing Java MIDlets for wireless devices may be found in Applications for
Mobile Information Devices, a Sun white paper with helpful hints for application developers and user
interface designers using the MIDP (http://java.sun.com/j2me/docs/pdf/midpwp.pdf). The book MIDP 2.0
Style Guide (Wagner, Bloch - Addison Wesley, 2003) contains practical guidelines for utilising the features
of MIDP 2.0. In addition, see the FAQ section of the Sony Ericsson SDK for the Java™ ME Platform
release notes for more information about application development.

Writing efficient applications

Java MIDlets run on phones with limited screen sizes, memory and processing power. Reducing the
number of created and destroyed objects will reduce memory usage and at the same time improve
performance by reducing the time spent by the JVM for intitialisation and garbage collection of these
objects.

Some recommendations for writing efficient applications:

• Make good use of static variables and avoid operations on String objects.

• Use the StringBuffer class for efficient manipulation of strings.

• Limit the use of inner classes and use an obfuscator to reduce class file size.

• Set object references to null as soon as they are no longer needed.

• Avoid unnecessary re-initialisation of variables that are automatically set to 0 or null by the VM.

• Use synchronisation sparingly. It is costly and is only needed in multi-threaded applications.

• Avoid loading the same image into memory more than once, since memory is consumed for each
duplicate.

• Close network streams when finished with, in order to preserve resources.

Low-level MIDP user interface

An application using the low-level MIDP user interface will always have a Canvas object. The Canvas is
implemented with double buffering to eliminate display flicker. The buffer is flushed when the paint()
method returns.

Some recommendations for writing low-level UI applications:

• Only repaint the part of the Canvas to be changed, but always remember to paint what is requested of
you to paint.
56 October 2008

http://java.sun.com/j2me/docs/pdf/midpwp.pdf

Developers guidelines | Java™ ME, CLDC – MIDP 2
• In JP-2 – JP-5, the method startApp() is not only called when the MIDlet starts, but also when
resuming after calling pauseApp(), for example, after the user has answered an incoming phone call.
This behaviour has been changed from JP-6 and onwards, where pauseApp()/startApp() are no
longer called in this situation. However, when the application uses a Canvas, hideNotify/
showNotify are triggered on these occasions.

Memory usage

Java MIDlets/applications allocates memory in several different memory areas. Memory problems most
often occur with allocation of memory for images. In this section some issues concerning memory usage
are covered.

Java heap

Java applications use two kinds of heap memory, plain Java heap and LAM (Large Array Memory). The
LAM is shared with other processes on the phone. Standard Java objects and vectors of Java objects are
always located on the Java heap. Arrays of primitive types (byte[], int[], float[]) however may
be put in the LAM if the plain Java heap is low on memory. Small arrays have a greater chance of ending
up in the plain Java heap, while large arrays more often are stored in the LAM. Images are also sometimes
placed in LAM.

The size and configuration of the Plain heap size and the LAM size varies between phone models.

Note: From JP-7 Sony Ericsson phones only have one java heap area, which grows dynamically.
Maximum heap size in JP-7 and JP8.0 – 8.3 phones is 6 MB, and in JP-8.4 phones 30 MB.

The size of LAM is not included in the values reported by Runtime.freeMemory and
Runtime.totalMemory.

Some simple rules to make the most of phone memory:

1. Always release memory before reallocating it:
char [] v = new char[100];
... do stuff ...
v = null; // by setting v to null the allocation below can re-use the memory.
v = new char[200];

The same schema goes for pictures, resources, and so on. For the phone to be able to re-use an image
vector the image must first be released:
Object o = allocateMyResource(size);
... do stuff ...
o = null; // Remove the reference to the resource so that it can be resumed
in the allocation below
o = allocateMyResource(someOtherSize);

2. Allocate objects first, then primitive arrays and images.
57 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Note: The Java VM in JP-7 and JP-8 phones supports multitasking. Even MIDlets running “in the
background” may have some heap memory allocated, which in turn may influence the available amount of
heap memory for MIDlets starting and running in other threads.

Video RAM areas

Note: JP-7 and JP-8 phones do not have dedicated video ram areas. In these phones the Java heap is
used for graphics. Java heap grows dynamically and is limited by free phone memory.

To assure that Java MIDlets will not run out of memory due to use of graphics, the JP-2 – JP-6 phones
covered in this document implement several memory areas for graphics. Graphics memory areas are used
in the following order. If one area is full or an image to large to fit in the free space of one area, the next
one is used instead.

1. One area of fast video RAM dedicated for graphics storage.

2. Another video RAM area, with somewhat slower access.

3. The general heap area of the phone is used for images when it is not possible to use the two video
RAM areas.

4. Swapping of images to the phone flash memory is supported (not in JP-7 and later phones).

Hints for using video memory
The developer should always try to fit commonly used images into the fastest RAM area and use the
slower areas for more seldomly used images. This is done by making the MIDlet fetch the commonly used
images first and make sure that they fit into the 80 kb of fast video RAM.

To increase the chances that an image is actually loaded into fast memory, another image in that area,
with at least the same size should be freed. Before allocating the new image into memory, garbage
collection (System.gc()) should be called.

Another issue to take into consideration when designing applications to use the fastest possible video
memory is fragmentation of memory. When an image, allocated between two other images in memory, is
freed, only images smaller than the free area can be allocated in that area. Thus, even if the system
reports enough free memory for allocation of an image, this may fail, because the free memory consists of
several areas, each to small for the image.

When using very large images, another problem can arise. If an image is to large to fit into the memory
dedicated for images, the Image.createImage() method may still succeed, because the image is
stored in flash memory. However when the image is to be displayed, it does not fit in the available video
memory, and can not be shown on the screen. The solution is to always estimate the image size in
memory before trying to use it in a MIDlet. All images are stored in phone memory in a 16-bit per pixel
RGB format, possibly with a 1-bit or 8-bit per pixel alpha-channel. Make sure to save all opaque images
with 1-bit alpha, as they are drawn much faster on the screen.
58 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Retrieving the IMEI number

The following command retrieves the IMEI (International Mobile Equipment Identity) number from Sony
Ericsson phones:

 System.getProperty("com.sonyericsson.imei")

This returns a string which uniquely identifies a phone, for example: “IMEI 004601-01-501762-8-01” (the
exact format of the returned string may differ from the example). Each GSM phone is assigned a unique
IMEI code when it is produced. See the following link for further information about IMEI:
http://www.numberingplans.com/index.php?goto=guide&topic=imei.

Note: "imei" in the attribute must be written with lowercase letters when the command is used for Sony
Ericsson phones, except for the P910 series where uppercase letters must be used instead ("IMEI").

Note: From JP-7.2, a unique subscriber number can be retrieved via
System.getProperty("com.sonyericsson.sim.subscribernumber").

Minimising and maximising MIDlets

A MIDlet can request to get minimised by calling setCurrent(null). A MIDlet can request to get
maximised by calling setCurrent(x) with x != null.

A request to get maximised will only be granted if the previous setCurrent() call was a request to get
minimised. Therefore a MIDlet that was minimised via the “long back” dialog can only get maximised by
first calling setCurrent(null) and then setCurrent(x) with x != null.

When the MIDlet is minimised, a Canvas.hideNotify() event is raised, and when it is maximised,
Canvas.showNotify() is raised. The Canvas.isShown() function can be used to query if the MIDlet
is currently in maximised or minimised state.

Multitasking MIDlets

Multitasking Java™ ME was introduced with Sony Ericsson Java Platform 7 (JP-7) and allows multiple
Java™ applications (MIDlets) to run concurrently within the same Virtual Machine. The implementation is
backwards compatible with previous Java platforms so that all existing MIDlets work on the new platform
without adjustments. The implementation is fully compliant with MIDP 2/JTWI specifications and does not
require any additional JAD properties or proprietary APIs. On earlier Java Platforms, only one Java
application was allowed running together with other phone applications.

The resource contention strategy for the multitasking environment is simple. Prioritisation in most cases
follows the pattern of “first come - first served”. For example, Bluetooth connections, sockets, memory
resources, and so on, are taken by the application/thread doing the first allocation. Exceptions to this
pattern are sounds, screen and user input through keyboard. The rules applied are basically the same as
when MIDlets compete with native phone applications for resources in a traditional single tasking Java
platform, or when threads within the same MIDlet compete for resources.
59 October 2008

http://www.numberingplans.com/index.php?goto=guide&topic=imei

Developers guidelines | Java™ ME, CLDC – MIDP 2
To programmatically control MIDlets running in the multitasking environment, the setCurrent(),
hideNotify(), showNotify() and isShown() methods may be used as outlined above.

The phone user can also select which application to run in the foreground and which to run in the
background via the phone MMI:

• Pressing the back button for ~1 second (referred to as "long back") and then selecting "Minimise" in
the popup window, puts the foreground application into background

• Pressing the "Activity Menu" button (if available) and then selecting an application running in the
backround, or starting a new application through the menu system, puts the foreground application
into background, and the selected application into foreground.

Adding events in the Activity menu from a MIDlet

From JP-7.5 it is possilbe for a MIDlet to publish events in the Activity Menu. This could be useful for
example for messaging applications which run "in the background", to notify the user that a new event
has occured without the MIDlet being "forced" into foreground.

The feature is implemented through a Sony Ericsson proprietary Java API, UIActivityMenu. The API gives
access to the “New Events” list in the phone’s Activity Menu structure.

public class UIActivityMenu {
public static synchronized UIActivityMenu getInstance(MIDlet m)
public void setEventListener(UIEventListener el)
public int addEvent(String title, Image icon)
public int addEvent(String title, String desc, Image titleIcon, Image descIcon)
}

In the “New events” list, an item is shown as a Title on one row and an optional Description on the next
row. Icons can be defined for the Title and the Description:

UIActivityMenu.getInstance(midlet).addEvent("Title", "Description", icon,
icon);

If no icon (null value) is defined for the Title, the default Application icon is displayed instead.

When a MIDlet is invoked as above, the Activity Menu is displayed on the phone screen, unless the
camera, video-player, video-call, or some other similar application is running in the foreground. When the
user selects an event from the “New events” list, the underlying application is maximised, and the
application receives the appropriate events. However, if the user deletes an event from the list, no
notification is sent to the application.
60 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Standby MIDlets

JP-7 and JP-8 phones have a feature allowing developers to enable a MIDlet as a standby application.
Just as the end user can assign a picture as wallpaper, it is also possible to select a Java application for
this purpose. A standby MIDlet is handled by the application manager, and is started when the phone
enters standby mode. It is stopped when the user selects another wallpaper, theme or picture. A MIDlet is
designated as a standby application via a JAD attribute setting.

Note: Standby MIDlets are not supported in early K610, K790 and K800 phones.

For details about creating standby MIDlets and some practical advice on how to design them, see http://
developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/
p_standby_midlet_jp7phones.jsp.

Autostarting MIDlets

JP-7 and JP-8 phones, except early K610, K790 and K800 phones, support autostarting MIDlets.

The autostart feature uses the MIDP push registry as its driver. To register an application for autostart,
simply do a push registration, either static or dynamic, using the push URI "autostart://:". The application
will then start automatically the next time the phone boots.

For more information about how to create autostarting MIDlets and some code samples, see the article on
the subject in the Tips, Tricks & Code section on Sony Ericsson Developer World.

Network APIs

Sony Ericsson phones support several network connections:

• HTTP 1.1 server connections (With HTTP 1.0 servers not all features below are supported)
• HTTPS connection (TLS 1.0 is also supported)

Note: HTTPS connections via Proxy are only supported from JP-5
• Push Registry
• TLS 1.0/SSL 3.0 connections
• Socket connections
• UDP connections (datagram).
61 October 2008

http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_standby_midlet_jp7phones.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_standby_midlet_jp7phones.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_standby_midlet_jp7phones.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_java.jsp?cc=gb&lc=en&ver=4000&template=pe3&zone=pe&lm=pe3

Developers guidelines | Java™ ME, CLDC – MIDP 2
Network API features

The following table lists the Network API features and classes of the javax.microedition.io
package, and their MIDP 2 support in Sony Ericsson phones.

HTTP 1.1 implementation

• HEAD, POST, GET methods are supported in all phones, PUT, DELETE, TRACE, and OPTIONS
methods are supported on JP-8 and higher.

• Persistent HTTP/1.1 connections is supported on JP-8 and higher. Keep-alive is not supported.

• The API implementation in Sony Ericsson phones chooses whether to use chunked transfers for a
particular request. Applications can not control whether chunking is used or not.

• User-Agent, Host, Transfer-Encoding, Content-Length and Proxy-Authorisation are set automatically
by the HTTP implementation as needed.

• Request properties settings are not required.

• Connection:close is supported.

Feature/Class Supported

Connector class Yes

All Fields, methods, and inherited methods for the
Connector class

Yes

Mode parameter for the Connector.open()
method

No

The timeouts parameter for the
Connector.open() method

No

Connector.http interface Yes

Connector.https interface Yes

SecureConnection interface Yes

SecurityInfo interface Yes

ServerSocketConnection interface Yes

UDPDatagramConnection interface Yes

PushRegistry class Yes

CommConnection interface From JP-7: Yes.
See also “Serial Port Communica-
tions (from JP-7)” on page 64

Dynamic DNS allocation through DHCP Yes
62 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Secure sockets and HTTPS connections

HTTPS is supported only for certificates installed on the phone. The following X.509 root certificates for
TSL/SSL server authentication are provided by default. However, operators can change which of them are
installed and also add other certificates. Local market variations may also exist.

When initiating a connection and the certificate can not be validated in JP-2 to JP-5 phones, the
connection fails and an exception is thrown. From JP-6, the user is prompted whether to accept the
connection or not. However, the behaviour in JP-2 to JP-5 phones can be avoided by installing a
certificate granting secure connections on the phone (a self-signed certificate can be used).

JAD/manifest attributes

The application descriptor must contain the following attributes:

• MIDlet-Name
• MIDlet-Version
• MIDlet-Vendor
• MIDlet-Jar-URL
• MIDlet-Jar-Size.

The application descriptor may contain:

• MIDlet-<n> for each MIDlet
• MIDlet-icon (for the ideal look and feel icon size 16x16 pixels is recommended) This attribute is only

supported from JP-4
• MicroEdition-Profile (recommended)
• MicroEdition-Configuration (recommended)
• MIDlet-Description
• MIDlet-Data-Size
• MIDlet-Permissions (recommended)
• MIDlet-Permissions-Opt
• MIDlet-Push-<n>
• MIDlet-Install-Notify
• MIDlet-Delete-Notify
• MIDlet-Delete-Confirm
• MIDlet-Certificate-<X>-<Y>

Certificate issuer Label

Verisign Verisign Class 3 CA

Baltimore GTE Cyber Trust Root

Entrust Entrust.net Root Certificate

GlobalSign GlobalSign Root CA

Thawte Thawte Server CA

RSA data Security -
63 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
• MIDlet-Jar-RSA-SHA1
• Any application-specific attributes that do not begin with MIDlet- or MicroEdition-.

Vodafone JAD attributes

Sony Ericsson phones manufactured for Vodafone, support the following additional attributes in the JAD/
manifest:

Serial Port Communications (from JP-7)

From Java Platform 7 (JP-7) serial port communication, defined as optional within the MIDP 2
specification, is supported.

The interface CommConnection extends StreamConnection to provide a means to access a serial
port.

The port is accessed using a Generic Connection Framework string:

comm:<port identifier>[<optional parameters>]

The port identifier is one of the exposed serial ports which can be queried through the
microedition.commport system property. A comma separated list of ports is returned.

String port1;
String ports = System.getProperty("microedition.commports");
int comma = ports.indexOf(',');
if (comma > 0) {

// Parse the first port from the available ports list.
port1 = ports.substring(0, comma);

} else {
// Only one serial port available.
port1 =ports;

}

To use serial communications, the relevant AT command must first be issued from the host. Both
Bluetooth and USB connection mechanisms are supported.

Attribute Comments

MIDxlet-Resident Supported values: Y = Resident MIDlet, N = Not resident MIDlet.
The attribute value S = Stay resident is not supported

MIDxlet-ScreenSize/
MIDxlet-Application-Range

Values: W, H or Wmin-Wmax, Hmin-Hmax. Screen size or minimum/maxi-
mum width and height expected by the application.
Both attributes are supported, but MIDxlet-ScreenSize is recommended. If
both attributes are present in a JAD file, MIDxlet-ScreenSize attribute has
precedence
64 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Once the phone is connected to the host, a COM port is assigned on the host side. Characters sent via
this connection are, by default, interpreted as AT commands by the phone.

The AT*SEJCOMM command can be used to create a virtual port accessible from the Java platform.

The AT*SEJCOMM command puts the port into a so called “transparent mode” where the AT channel
stops intercepting input, and subsequent characters appear as input on the serial port. The command
expects <port> and optional <persistent> parameters.

The <port> parameter is used to specify a virtual port number which creates a binding to the physically
connected port. For example, if the phone has been connected to the host and is using COM 4, the
command AT*SEJCOMM=1 will instruct the phone to create a virtual port called “AT1” and connect it to
COM 4. If the command is successful, "CONNECT" is returned and the AT channel enters transparent
mode.

Depending on the <persistent> parameter, once the MIDlet closes or is terminated, the AT channel leaves
transparent mode and the virtual port is destroyed. If the persistent flag is set with the value 1, the port
remains until the bearer (for example, a USB cable) is disconnected.

The virtual ports are accessible to the Java platform in the form of “AT<port>”.

CommConnection cc = (CommConnection)
Connector.open("comm:AT1");

int baudrate = cc.getBaudRate();
InputStream is = cc.openInputStream();
OutputStream os = cc.openOutputStream();
int ch = 0;
while(ch != 'Z') {

os.write(ch);
ch = is.read();
ch++;

}
is.close();
os.close();
cc.close();

Command Responses

AT*SEJCOMM=<port>[,<persistent>] CONNECT
OK

ERROR
+CME ERROR <err>
65 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
JSR-75 implementation

JSR-75 is implemented from JP-5. This section specifies which features are supported in these phones.

PIM API

The PIM API supports the following PIM lists:

• Contacts (ContactList)
• Calendar (EventList)
• Tasks (ToDoList).

Actual names of lists and other labels depend on locale.

Contacts
Supported Java PIM fields (native/GUI field names in parenthesis):

• UID (LUID)
• NAME (LastName/Name). Supported array elements:

• NAME_FAMILY
• NAME_GIVEN

• ADDR (HomeAddress). Only one address, always ATTR_HOME. Supported array elements:
• ADDR_STREET (Street)
• ADDR_LOCALITY (City)
• ADDR_REGION (State)
• ADDR_POSTALCODE (Zip code)
• ADDR_COUNTRY (Country)

• TITLE
• ORG (Company)
• EMAIL
• URL
• NOTE (Freetext)
• TEL, supported attributes (max one + ATTR_PREFERRED):

• ATTR_HOME (HomeNumber)
• ATTR_WORK (WorkNumber)
• ATTR_MOBILE (CellNumber/Mobile number)
• ATTR_FAX (FaxNumber)
• ATTR_OTHER (OtherNumber)
• ATTR_PREFERRED (DefaultNbr), on one number only
• Numbers are sent to different database containers based on attributes. If two numbers have the

same attribute only one is stored. One number with multiple attributes creates copies in different
containers (not combined on retrieval). No attribute is treated like ATTR_OTHER. As a consequence
of all this, field value indexes are not preserved on retrieval

• Supported char-set: '0'-'9','*','#','?','+' and 'p'
• PHOTO or

PHOTO_URL
• Files that have no Java mapping are not returned on read, for example, predefined images that link

to system directories
• Only local URLs ('file:///') that refer to existing files can be persisted
66 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
• RINGTONE = PIMItem.EXTENDED_FIELD_MIN_VALUE + 1 or
RINGTONE_URL = PIMItem.EXTENDED_FIELD_MIN_VALUE + 2. (Ringtone). Only supported on JP-8

Unsupported Java standard fields
• BIRTHDAY
• CLASS
• FORMATTED_ADDR
• FORMATTED_NAME
• NICKNAME (Requires vCard 3.0)
• PHOTO
• PUBLIC_KEY
• PUBLIC_KEY_STRING
• REVISION.

Unsupported native fields
• Birthday
• ChangeCounter
• ContactPosition
• WVID (Presence ID)
• NameVoiceTag (Voice Commands)
• JapaneseReading (Furigana).

Restrictions
• All fields except TEL can have one value only
• Categories are not supported
• A maximum of 1000 contacts (2500 phone numbers) can be saved in the phone.

Calendar
Supported Java PIM fields (native/GUI field names in parenthesis):

• UID (LUID)
• SUMMARY (Summary/Description)
• LOCATION (Location)
• NOTE (Description)
• END (EndDateAndTime)

Default: current time + 1 second
• START (StartDateAndTime)

Default: current time
• ALARM (ReminderDateAndTime)

Must be positive, that is, before start
• CLASS (Class)
• REVISION (LastModified).
• GEO (extended field, SEMC specific, supported from JP-8)

Unsupported native fields
• TimeZone
• DaylightSaving
• AllDayEvent.

Restrictions
• Database must have: ALARM <= START <= END (defaults set on commit)
• RepeatRules (Recurring events) are only supported from JP-8. In JP-5 – JP-7 phones, only the first

item in a recurrence series is retrieved
67 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
• Categories are not supported
• A maximum of 300 calendar events can be saved in the phone.

Tasks
Supported Java PIM fields (native/GUI field names in parenthesis):

• UID (LUID)
• SUMMARY (Summary/Description)
• NOTE (Description)
• DUE (RemainderDateAndTime/Reminder)
• COMPLETION_DATE (CompletedDateAndTime)
• COMPLETED (Status). Native system currently uses:

• CAL_STATUS_NOT_STARTED_VALUE (0), mapped to false
• CAL_STATUS_IN_PROGRESS_VALUE (1), equated to not started
• CAL_STATUS_COMPLETED_VALUE (2), mapped to true

• PRIORITY (Priority). Native system currently uses:
• CAL_PRIORITY_HIGH_VALUE (1)
• CAL_PRIORITY_NORMAL_VALUE (2)
• CAL_PRIORITY_LOW_VALUE (3)
• Only 8 bits are persisted (not sign extended on retrieval)

• CLASS (Class)
• REVISION (LastModified).
• GEO (extended field, SEMC specific, supported from JP-8)

Unsupported native fields
• TimeZone
• DaylightSaving
• DueDateAndTime.

Restrictions
• Categories are not supported
• A maximum of 80 tasks can be saved in the phone.

PIMChangeListener (from JP-8.3)
On JP-8.3 and higher, the PIMChangeListener Interface can be used by applications to receive events
whenever PIMItems stored in a PIMList have been changed. Events are triggered by the following
operations:

• newly created and committed PIMItems (added)
• modified or removed fields in existing PIMItems (modified)
• permanently removed PIMItems from a PIMList (removed).

More information about the PIMChangeListener features can be found in PIMChangeListener doc.zip,
included with the zip package containing this document.

Geographic information
The JSR-75 implementation supports geographical positions (longitute and latitude) from JP-8, but only
for Event and ToDo items. The GEO field is an extended field, which makes it specific for Sony Ericsson
phones. However when vCal items containing GEO field are imported, GEO information is stored together
with the rest of the Event/ToDo information.
68 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Serialisation
Serialisation includes converting vCards and vCalendar events/todos in serial (text) form into PIM items
(FromSerial), and back again (ToSerial).

There are two parsers, one for vCards and one for vCalendar Events/ToDos. As required by the standard,
the parsers support vCard 2.1 and vCalendar 1.0, with Quoted-Printable and BASE64 encoding formats.
The character encoding must be UTF-8, which means that normal 7-bit ASCII is also allowed (since it is a
subset of UTF-8).

Only values/properties supported by the databases are copied to the PIM item.

If there are too many values for a particular field, the implementation will favour those with attributes that
the field supports.

File Connection API

This section specifies the File Connection API support from JP-5 and onwards.

The folders listed below and their content (including sub-folders), which are available via the File Manager
application in the phone, are available via the FileConnection API as directories (folders) and files. This
includes also access to the whole file system on an external memory (removable media), if present.

• <file:///c:/>
• <file:///c:/other>
• <file:///c:/pictures/>
• <file:///c:/sounds/>
• <file:///c:/videos/>
• <file:///e:/> (memory card)
• <file:///e:/dcim/> (camera pictures folder on memory card).

Note: The folders Games, Themes, Applications and Webpage are not available via the Java File
Connection API.

Note: Which folders are accessible via the File Connection API may differ between different phone
models. For example, in JP-7 and JP-8 phones, there is a Camera folder in phone internal memory, <file:/
//c:/camera>, and the Themes and Webpage folders on memory card are accessible.
The PDAPDemo application supplied with the Sony Ericsson SDK for the Java ME platform is
recommended to find out exactly which folders are accessible in internal memory and installed memory
card of a specific phone.

To query the location of, for example, the default camera folder, the recommended approach is to use the
system property “fileconn.dir.photos”. See “JSR-75 system properties” on page 80 for details on
how to query default locations of folders in the file system.

Attempts to access other file areas than the ones specified above, result in a
java.lang.SecurityException being thrown to the Java application.

The File Connection API supports the same file/dir attributes as are supported by the built-in File manager
application. File and directory names accessed via the File Connection API are case-insensitive.

The length of a file path is limited by the native file system (including the memory card file structure).
69 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Note: The Java path is mapped to a native path. The maximum native path is 120 characters.

Restricted file/directory operations
The following operations fail if they are performed on any of the built-in roots:

• Create new file in the root directory
• Create new directory in the root directory
• Change attributes
• Delete root or built in directory
• Rename root or built in directory
• Request of last modification date returns 0.

Rules for operations on DRM protected files
The following operations are supported on DRM protected files:

• Open connection
• List (DRM protected files appear in directory lists)
• Request file size
• Request attributes and last modification date
• Delete
• Exists
• Is directory.

The following operations are not supported on DRM protected files:

• Create file
• Change attributes
• Rename file
• Truncate file
• Open input stream
• Open output stream.

Rules for operations on Sony Ericsson encrypted files
Sony Ericsson encrypted files are files that are encrypted and stored in phone memory or on the memory
card. These files are not accessible for the user.

The following operations are supported on encrypted files:

• Open connection
• list (encrypted files will appear in directory lists)
• exist
• file size
• can read
• can write
• is hidden
• lastModified
• dirSize (encrypted files are counted).

The following operations are not supported on encrypted files:

• create
• setReadable
• setWritable
• setHidden
70 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
• delete
• rename
• truncate
• openInputStream
• openOutputstream
• read / write.

Playing media files with MMAPI using progressive download
The File Connection API implementation on Java platforms JP-6 and onwards allows progressive
download of media files to be played via the MMAPI. This allows the player to start playing the media file
before the whole file actually has been loaded into memory.

To make use of progressive download in a player application, the createPlayer method must be
invoked with a file scheme locator string as parameter, for example:

Manager.createPlayer(file:///c:/sounds/song.mp3);

Note: This functionality is not implemented on Java platform JP-5, where the MMAPI implementation
does not support the file scheme in the createPlayer method. In JP-5 phones, playing of media is
invoked via createPlayer(InputStream stream, String type) which does not take advantage
of progressive download. The consequence is that the whole media file must be loaded into memory
before the player starts playing. This can in some cases take quite long time with large media files.

Note: from JP-7 phones, progressive download according to 3GPP TS 26.234 45.3.0 is supported both
for http download and InputStream via JSR-135.

Video overlay

Note: With JP-8.x phones, it is strongly recommended not to use GameCanvas with MMAPI, Canvas
should be used instead.

On Java Platform JP-7 and JP-8 it is easy to create an overlay over a video clip shown in a MMAPI video
player instance. All pixels drawn with Canvas.paint are overlayed over the video, canvas areas where
nothing has been drawn remain transparent. Note that if a filled shape is drawn, for example, a rectangle
with a background color, the video will be completely hidden behind the shape.

Before using the overlay technique, a javax.microedition.media.control.VideoControl has to
be initiated on the current javax.microedition.media.Player, for example:

VideoControl videoControl = (VideoControl)player.getControl("VideoControl");
videoControl.initDisplayMode(VideoControl.USE_DIRECT_VIDEO | (overlay << 8),
canvas);

where overlay is set to 1 for overlay mode, 0 for no overlay.
71 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Video rotation/mirroring

Note: The rotation/mirroring mode described here is not applicable for GIF animations.

A VideoControl can be used to mirror and/or rotate the video on the display. A
javax.microedition.media.control.VideoControl is initiated on the current
javax.microedition.media.Player, for example:

VideoControl videoControl = (VideoControl)player.getControl("VideoControl");
videoControl.initDisplayMode(VideoControl.USE_DIRECT_VIDEO | (orientation <<
4), canvas);

Orientation is set to one of the following integer constants in the
javax.microedition.lcdui.Sprite class:

Rotation can only be used in VideoControl.USE_DIRECT_VIDEO mode, using
VideoControl.USE_GUI_PRIMITIVE throws an exception.

Note that VideoControl.getSourceWidth() returns the width of the non-rotated object, it is up to
the MIDlet to keep track on what is height and what is width of the rotated video. Furthermore, the
coordinates (0,0) always refers to the top left corner of the video, regardless of rotation.

Video rotation/mirroring during playback

A DisplayModeControl can be used to mirror and/or rotate the video on the display during playback.
A com.sonyericsson.media.control.DisplayModeControl is initiated on the current
javax.microedition.media.Player.

Example:

Orientation constant Effect

TRANS_MIRROR Causes the sprite to appear reflected about its vertical center

TRANS_MIRROR_ROT180 Causes the Sprite to appear reflected about its vertical center and then
rotated clockwise by 180 degrees

TRANS_MIRROR_ROT270 Causes the Sprite to appear reflected about its vertical center and then
rotated clockwise by 270 degrees

TRANS_MIRROR_ROT90 Causes the Sprite to appear reflected about its vertical center and then
rotated clockwise by 90 degrees

TRANS_NONE No transform is applied to the Sprite

TRANS_ROT180 Causes the Sprite to appear rotated clockwise by 180 degrees

TRANS_ROT270 Causes the Sprite to appear rotated clockwise by 270 degrees

TRANS_ROT90 Causes the Sprite to appear rotated clockwise by 90 degrees
72 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
DisplayModeControl displayModeControl = (DisplayModeControl)player
.getControl("DisplayModeControl");
displayModeControl.setDisplayMode(orientation <<4);

Orientation is set to one of the integer constants in the javax.microedition.lcdui.Sprite class.

The interface:

package com.sonyericsson.media.control;
public interface DisplayModeControl extends Control {
 public void setDisplayMode(int displayMode);
 public int getDisplayMode();
}

Tips for using the JSR-82

Local device

To find out what is supported by the phone, use LocalDevice.getProperty(). See JavaDoc for valid
properties.

Device discovery

Tip 1
Filter found RemoteDevices immediately by using DeviceClass. By doing this unnessecary actions can
be avoided, for example, doing a service search on a discovered PC when running a Java ME game.

Tip 2
If retrieving cached remote devices via JSR-82 API, then the information about remote device class is not
available. It might be better to implement cache with filtered devices from the initial device discovery.

Tip 3
Only ask for friendly names for the devices displayed in GUI, and save time.

remoteDevice.getFriendlyName(true) is supported from JP-5.

Tip 4
To gain better user experience, present discovered remote devices directly when found. Do not wait until
the inquiry is completed.
73 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
More device discovery tips
On Sony Ericsson Developer world, an article named “Bluetooth probe for mobile phones supporting
JSR-82” gives some useful tips and code examples for device discovery: http://
developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_bluetooth_probe_jsr82.jsp

Games

Use ByteArrayOutputStream/ByteArrayInputStream buffer for RFCOMM.

The transfer rate may be increased by using fixed size byte array, that is, by not having to send the buffer
length before sending the actual byte buffer.

Managing connections between Bluetooth SDP records
and a game server

On Sony Ericsson Developer world, an article can be found, giving tips and code samples on how to
handle SDP records correctly, avoiding problems with rejected Bluetooth connections, for example, when
clients in one or more phones tries to connect to a game server in another phone. For details, see http://
developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/
p_advice_bluetooth_sdp_game+server.jsp

The accelerometer sensor in JP-8 phones

Through JSR-256, parameter values from the built-in accelerometer in, for example, the K850 and W910
series can be read and processed. The accelerometer in these phones has the following characteristics:

• Channels, X, Y and Z. Each channel represents acceleration force vectors in relation to the phone.

• Ranges: –2300 to +2300

• Datatype: Int

• Unit: G. Scale: -3. This implies that acceleration measurements are given in the unit milliG (10-3 G),
where G is earth gravity (~9.81 m/s2).

Example: A reading of Z = 1000; X = 0; Y = 0 indicates that downwards acceleration is 1000x10-3 = 1.0 G,
which in turn means that the phone is being held horisontally with the screen facing straight upwards.
74 October 2008

http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_bluetooth_probe_jsr82.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_bluetooth_probe_jsr82.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_advice_bluetooth_sdp_game+server.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_advice_bluetooth_sdp_game+server.jsp

Developers guidelines | Java™ ME, CLDC – MIDP 2
JSR-211 content handlers

JSR-211 Walkman® player content handler

This content handler, implemented on JP-8.3 and higher, can be used to launch the native music player
on Walkman® phones. The code sample below illustrates:

Registry registry = Registry.getRegistry(this.class.getName());
Invocation invoc = new Invocation();
invocation.setID("com.sonyericsson.musicplayer");
invoc.setURL(file:///..../playlist.m3u); //optional, if not used a resume play
will be made.
invoc.setResponseRequired(true);
boolean mustExit = registry.invoke(invoc);
if (mustExit) {

// App must exit before invoked application can run
destroyApp(true);
notifyDestroyed();
}

else {
 // Application does not need to exit

}

JSR-211 interaction with browser

On JP-8 and higher, the native browser is able to start MIDlets using JSR-211. If the scheme router of the
browser does not recognise a URI scheme, it calls JSR-211 which invokes the MIDlet that has registered
itself for that specific scheme.

To enable this feature, the MIDlet must register itself for a specific scheme.

Example on static registration for the scheme “semc://” in the jad file of the sample MIDlet ShowLogo:

MicroEdition-Handler-1: com.sonyericsson.test.ShowLogo, semc:
75 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
JSR-211 Shortcut launcher

JSR-211 Shortcut launcher is implemented on JP-8.4.

This content handler can be used to launch native applications using URLs. The code sample below
illustrates this.

Registry registry = Registry.getRegistry(this.class.getName());
Invocation invoc = new Invocation();
invoc.setID("Content Handler ID");
invoc.setResponseRequired(true);
boolean mustExit = registry.invoke(invoc);
if (mustExit) {
 // App must exit before invoked application can run
 destroyApp(true);
 notifyDestroyed();
} else {
 // Application does not need to exit
}

The following Content Handler IDs are available:

• Alarm
Launch the alarm settings application.
ID: “com.sonyericsson.alarm”

• Browser (bookmarks)
Launch the Web browser on a bookmark.
ID: “com.sonyericsson.bookmarks”

• Browser (enter URL)
Launch the Web browser with an entered URL.
ID: “com.sonyericsson.enterurl”

• Calculator
Launch the Calculator application.
ID: “com.sonyericsson.calculator”

• Camera
Launch the Camera application.
ID: “com.sonyericsson.camera”

• Email
Launch the email client.
ID: “com.sonyericsson.email”

• Radio
Launch the Radio application.
ID: “com.sonyericsson.radio”

• Bluetooth settings
Launch the Bluetooth connectivity dialog.
ID: “com.sonyericsson.settings.bluetooth”
76 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
• Clock size settings
Launch the clock size settings application.
ID: “com.sonyericsson.settings.clocksize”

• Date settings
Launch the date format settings application.
ID: “com.sonyericsson.settings.date”

• Flight mode settings
Launch the flight mode settings menu.
ID: “com.sonyericsson.settings.flightmode”

• General settings
Launch the control panel application.
ID: “com.sonyericsson.settings.general”

• My number settings
Launch my number display settings application.
ID: “com.sonyericsson.settings.mynumber”

• Profiles settings
Launch the profile settings menu.
ID: “com.sonyericsson.settings.profiles”

• Shortcut settings
Launch the idle shortcut settings application.
ID: “com.sonyericsson.settings.shortcuts”

• Silent mode settings
Launch the silent mode settings menu.
ID: “com.sonyericsson.settings.silentmode”

• Synchronisation settings
Launch the Synchronisation application.
ID: “com.sonyericsson.settings.synchronisation”

• Time settings
Launch the clock/clock format settings application.
ID: “com.sonyericsson.settings.time”

• Wallpaper settings
Launch the wallpaper settings application.
ID: “com.sonyericsson.settings.wallpaper”

• WLAN settings
Launch the WLAN settings application.
ID: “com.sonyericsson.settings.wlan”

• Calendar
Launch the Calendar application.
ID: “com.sonyericsson.calendar”

• Media
Launch the Media application.
ID: “com.sonyericsson.mediacenter.general”
77 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Querying system properties

Calls to the Java platform to find out which system properties are supported in a phone can be made on
different levels, for example, what classes are supported in the phone or what properties are supported by
a specific class.

Supported classes

To check if a phone supports a specific class, the Class.forName()function can be used.

try{
Class.forName("...");

}
catch(Exception ex){

System.out.println("No support for")
}

Examples:

Class.forName("javax.microedition.media.Manager"); //JSR135
Class.forName("com.nokia.mid.ui.DeviceControl"); // Nokia UI extension
Class.forName("javax.bluetooth.LocalDevice"); //JSR82
Class.forName("javax.wireless.messaging.MessageConnection");//JSR120
Class.forName("javax.microedition.pim.PIM"); //JSR75
Class.forName("javax.microedition.m3g.Graphics3D"); //JSR184
Class.forName("com.mascotcapsule.micro3d.v3.Graphics3D"); //Mascotcapsule

System.getProperty(String Key) calls

Java.lang.System.getProperty(String Key) calls are used to find out what is supported in the
phone.

Example:

import java.lang.*;

String value;
String key = "microedition.pim.version";

value = System.getProperty(key);
...

Standard system properties
The following are examples of standard properties that can be retrieved with the
System.getProperty() call:
78 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
microedition.configuration
microedition.profiles
microedition.encoding
microedition.locale
microedition.platform
microedition.jtwi.version //JSR-185

Sony Ericsson specific system properties
com.sonyericsson.imei
com.sonyericsson.sim.subscribernumber
com.sonyericsson.jackknifeopen
com.sonyericsson.flipopen
com.sonyericsson.java.platform

Note: Retrieving the unique subscriber number via
System.getProperty("com.sonyericsson.sim.subscribernumber") is supported only from
JP-7.2.

System.getProperty("com.sonyericsson.jackknifeopen") is only supported for phones from
JP-6 and onwards, and returns one of the following values:
0 = swivel closed
1 = swivel open
-1 = the phone does not have jack knife form factor.
Null is returned for phones on platforms JP-2 – JP-5.

System.getProperty("com.sonyericsson.flipopen") is only supported for clam-shell phones
from JP-6 , and returns one of the following values:
0 = flip closed
1 = flip open
-1 = the phone does not have clam-shell form factor.
Null is returned for phones on platforms JP-2 – JP-5.

System.getProperty("com.sonyericsson.java.platform") is supported from JP-7 and returns
the java platform for the phone, for example, “JP-7.1” is returned for a W850 phone.

Network properties retrieved in Sony Ericsson phones
The following network properties can be retrieved using the System.getProperty(key) call. Network
properties are supported from JP-7.3.

key = "com.sonyericsson.net.mcc"
Home Mobile Country Code. Three digits, for example, 240

key = “com.sonyericsson.net.mnc”
Home Mobile Network Code. Two or three digits , for example, 01

key = “com.sonyericsson.net.cmcc”
Current (Network) Mobile Country Code. Three digits, for example 240

Key = “com.sonyericsson.net.cmnc”
Current (Network) Mobile Network Code. Two or three digits, for example, 01

Key = “com.sonyericsson.net.isonhomeplmn”
79 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Returns "true" when the phone is camping on the home PLMN (Public Land Mobile Network), that is, the
mnc of the network matches the mnc of the SIM, returns "false" otherwise , also if there is no network.

key = “com.sonyericsson.net.rat”
Returns the current (if any) Radio Access Technology, RAT. Possible values are "WCDMA", "GSM" or null
(in flightmode).

key = “com.sonyericsson.net.cellid”
Returns the identity of the cell the phone is currently camping on (if any). For GSM network this is a four
digit number and for WCDMA network this is a eight digit number. Returns null when the radio is not
enabled.
Examples: "0123", "00192345", null

key = "com.sonyericsson.net.lac”
Returns the four digit location area code the phone is currently camping in (if any) or null, for example,
0064, null

key = “com.sonyericsson.net.status”
Network status, allowed values: “Home PLMN”, “Available”, “Preferred”, “Forbidden”, “No
Network”, “Unknown”

JSR-120 system properties
To find out if the API is implemented:

System.getProperty("wireless.messaging.sms.smsc")

JSR-75 system properties
To find out what versions of the JSR-75 APIs are implemented in the phone:

System.getProperty("microedition.io.file.FileConnection.version")
System.getProperty("microedition.pim.version")

The following file connection API properties are URLs of default storage directories in the phone, retrieved
with the System.getProperty() call:

fileconn.dir.photos
fileconn.dir.videos
fileconn.dir.graphics
fileconn.dir.tones
fileconn.dir.music
fileconn.dir.recordings
fileconn.dir.private

Localised names of directories corresponding to the default URLs above are found in the following
properties:

fileconn.dir.photos.name
fileconn.dir.videos.name
fileconn.dir.graphics.name
fileconn.dir.tones.name
fileconn.dir.music.name
fileconn.dir.recordings.name
fileconn.dir.private.name
80 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
The following call returns localised names to the roots returned by the
FileSystemRegistry.listRoots() method. The returned names are listed in the same order as
returned by this method and are separated by semicolon (;):

System.getProperty("fileconn.dir.roots.names")

Note: Property retrieval behaviour differs slightly between some early JP-6 phone models and other
phones, due to changes in the fileconn property syntax. Null may be returned when using the above
syntax with some early JP-6 phones. The following code could be used to provide a generic means to
address this behaviour difference:

public String getProperty(String param)
{

int index = param.indexOf(".");
String extension = param.substring(index,param.length());
String value = System.getProperty("fileconn" + extension);
return value != null ? value : System.getProperty("filconn" + extension);

}

MMAPI system properties
The following properties can be retrieved from the MMAPI using the System.getProperty() call:

microedition.media.version
supports.mixing
supports.audio.capture
supports.video.capture
supports.recording
audio.encodings
video.encodings
video.snapshot.encodings
streamable.contents

To find out which protocols and content types are supported, the following calls can be made from a
Manager class object:

static java.lang.String[] getSupportedContentTypes(java.lang.string protocol)
//lists supported content types for a given protocol
static java.lang.String[] getSupportedProtocols(java.lang.string content_type)
//lists supported protocols for a given content type

From a Player class object, a specific Control or the Controls collection supported by the player can
be retrieved:

Control getControl(java.lang.String ControlType)
Control[] getControls()

AMMS system properties
The following properties can be retrieved from AMMS (JSR-234) using the System.getProperty() call:

microedition.amms.version
camera.orientations
audio.samplerates (from JP-8)
audio3d.simultaneouslocations (from JP-8)
81 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
supports.mediacapabilities (from JP-8)
tuner.modulations (from JP-8)

Bluetooth Local device properties (JSR-82)

To find out what Bluetooth API properties are supported in the local device, the
LocalDevice.getProperty("...") can be called with the following parameters:

bluetooth.api.version
bluetooth.master.switch
bluetooth.sd.attr.retrievable.max
bluetooth.connected.devices.max
bluetooth.l2cap.receiveMTU.max
bluetooth.sd.trans.max
bluetooth.connected.inquiry.scan
bluetooth.connected.page.scan
bluetooth.connected.inquiry
bluetooth.connected.page

Implementation specific properties in JSR-184

The version of the JSR-184 API is retrieved with:

System.getProperty("microedition.m3g.version")

Other JSR-184 properties can be retrieved through the Graphics3D.getProperties("...") with the
following keys:

supportAntialiasing
supportTrueColor
supportDithering
supportMipmapping
supportPerspectiveCorrection
supportLocalCameraLighting
maxLights
maxViewportDimension
maxTextureDimension
maxSpriteCropDimension
maxTransformsPerVertex
maxTextureUnits
82 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Knowledge base

Q: How can I detect the swivel position on jack knife phones?

A: For JP-6, JP-7 and JP-8 phones the current swivel position is detected by calling
System.getProperty("com.sonyericsson.jackknifeopen")
Return values:
0 = swivel closed
1 = swivel open
-1 = the phone doesn't have jack knife form factor.
Null is returned for phones on platforms JP-2 – JP-5.

Changes of the swivel position generates keyCodes and are detected by the Canvas.Keypressed()
event method.

• keyCode -32 is returned when the swivel is opened
• keyCode -33 is returned when the swivel is closed

Q: How can I detect if a clam-shell phone is open or closed

A: For JP-6, JP-7 and JP-8 phones the current “flip” position is detected by calling
System.getProperty("com.sonyericsson.flipopen")
Return values:
0 = flip closed
1 = flip open
-1 = the phone does not have clam-shell form factor.
Null is returned for phones on platforms JP-2 - JP-5.

When the phone is opened or closed, keyCodes are generated and can be detected by the
Canvas.Keypressed() event method.

• keyCode -30 is returned when the phone is opened
• keyCode -31 is returned when the phone is closed

Q: Is it possible to tell if the user is currently using landscape or portrait playing style?

A: There is no programmatic way to detect if a phone is used in portrait or landscape playing style. Since
the JVM is not aware of any screen configuration changes, the following should be considered:

• The canvas getWidth() and getHeight() methods return the same values regardless what
screen configuration is being used.

• The canvas sizeChanged() is not invoked when the playing style changes.
• Key codes remain constant and are not automatically inverted.
• selection key menus remain unchanged, there is no way to programmatically change their orientation.

It is the responsibility of the MIDlet to supply a means to allow a user to set their screen configuration
preference. The user can change between playing styles, either landscape or portrait, while the MIDlet is
active. Therefore the ability to change between playing styles after initalisation should be a design
consideration.

Q: Are existing portrait mode MIDlets compatible with phones offering landscape playing style?
83 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
A: In keeping the Sony Ericsson Java platform strategy, phones supporting landscape playing style
remain backward compatible with phones offering the same Java platform but supporting only portrait
screen configuration.

Q: How can I develop for a screen in landscape playing style?

A: There are a number of different approaches to consider when working towards landscape playing style:

• Design for square
This is the simplest approach and is concerned with targeting the shortest width offered by a given
screen size. By assuming a common screen size of 176 x 220 pixels but designing towards176x176, a
virtual square can be created that will cater for both landscape and portrait playing style and be highly
portable. A drawback to this approach is the inherent "dead space". A popular solution is to mask the
dead space with suitable user interface additions.

• Generic Layout.
By not deciding a layout strategy and instead using the MIDP high level APIs, the application can be
allowed to decide how best to cater for the screen dimensions and layout. This is generally only
practical for business applications since much of fine grained control required for game oriented
content is lost and high level cannot be concurrently mixed with low level.

• Fit to window
By using Canvas to query the screen dimensions appropriately, MIDlets can scale effectively
regardless of what screen dimensions are available.

// assumes a fixed size
g.fillRect(4,8, 248, 220);
g.drawString("this isn't generic",10,20,0);

// makes a decision depending on dimensisions
g.fillRect(0, 0, getWidth() / 2, getHeight() / 2);
g.drawString("this is generic",getWidth() / 2, 0,g.TOP | g.HCENTER);

This is considered "best practice" but relies heavily on other artifacts positioning to work effectively,
and can lead to increased development time. It can also inherently lead to a stretched appearance
though this can have relatively little impact depending on application type and genre. A popular
compromise is to combine the design for square approach with "fit to window" by centering the virtual
square in a generic way.

• Fit Content
This approach requires reimplementation to take advantage of the extra screen width and usually also
involves changing the dynamics of the application substantially, such as:

• Increased number of artifacts.
The new space needs to be filled in a natural way – a common answer to this is to increase the
number of on screen artifacts.

• Increased horisontal clipping distance.
The clipping area should also be adjusted to cater for the different screen configurations.

Fitting the content to the new dimensions provides the most optimal use of the screen space.
However, it requires a significant amount of additional development.

Q: How do I use the extra A and B gaming buttons?
84 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
A: Regardless of which design strategy is used, the K790, K800, K810, W550, W600, W830, W850 and
W910 series are equipped with two additional A and B buttons for improvement of the landscape gaming
experience.

You can use the extra buttons via the MIDP 2 GameCanvas GAME_A and GAME_B constants or by
keycodes. The key codes for the extra A and B gaming buttons are defined as:

• ButtonA: key code = -13
• ButtonB: key code = -14

They are used in the usual form:

protected void keyPressed(int keyCode) {
switch (keyCode) {
case ButtonA:
…
case ButtonB:
…
}
}

Q: How can I rotate my graphics to match changing playing styles?

A: The MIDP 2.0 Sprite class provides a convenient setTransform method to allow images to be
easily rotated using predefined constants.

sprite.setTransform(Sprite.TRANS_MIRROR_ROT90);

Alternatively you can simply use the Graphics drawRegion method with the same constants, often in
place of drawImage:

// the original image
g.drawImage(image, x, y, Graphics.TOP | Graphics.LEFT);
// identical to drawImage but with the image rotated.
g.drawRegion(this.image, 0, 0, image.getWidth(), image.getHeight(),
Sprite.TRANS_ROT90, x, y, g.LEFT|g.TOP);

When moving back and forth between landscape and portrait playing styles you will commonly use the
Sprite.TRANS_ROT90 and Sprite.TRANS_NONE constants.
85 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Appendix C
Sony Ericsson SDK for the
Java™ ME Platform

This appendix contains information about the Sony Ericsson SDK for the Java™ ME platform and its
integration in different developer tools.
86 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Features

The Sony Ericsson SDK for the Java™ ME Platform is a modified version of the Sun Java Wireless Toolkit
(WTK). The Sony Ericsson SDK supports all Java APIs implemented in Sony Ericsson JP-2 – JP-8 phones,
see “Sony Ericsson Java platforms” on page 15, and includes detailed documentation (JavaDoc) of these
APIs. Full 3D emulation, Mascot Capsule Ver. 3 and Ver. 4 (JSR-184), is also supported.

The SDK also supports On-Device source-level Debugging (ODD). The Sony Ericsson SDK for Java™ ME
can be integrated with any UEI compliant Java IDE.

Additionally, the SDK includes useful utilities such as the Device Explorer and the ejava.exe command line
tool. These provide an interface for manipulating the phone application manager. The developer can
install, remove, start, stop, pause, and resume Java applications. The Device Explorer also provides an
interface for displaying heap and file system statistics, requesting garbage collection to run, enabling VM
trace messages, and enabling serial network emulation.

Another utility, working with phones on JP-8.3.1 and higher, is the Resource Monitor. It is available from
the ODD interface, and displays memory usage and CPU load in the phone. This utility is included with the
Sony Ericsson SDK, version 2.5.0.2 and higher.

Installing and updating the SDK

Installing
Before installing the Sony Ericsson SDK for the Java™ ME Platform, the SDK Java SE Development Kit
need to be installed. Installation of an IDE can be done either before or after installing the Sony Ericsson
SDK for the Java™ ME Platform. Note that an IDE is not required but is highly recommended.

Updating
The latest version of the Sony Ericsson SDK for the Java™ ME Platform is available for download at
www.sonyericsson.com/developer/java. The Sony Ericsson SDK for the Java™ ME platform is required
for ODD.

After updating the SDK to a newer version, it is recommended to clear all platforms in the IDE and then
reselect all profiles from the latest SDK version. It has been noted that, if emulator profiles are selected
from an earlier version than the selected device debug profiles, the following error may occur when
starting device debugging:
org.xml.sax.g: Unexpected end of Tag

Selecting devices for ODD
Regardless of which IDE is used, the On Device Debugging functionality requires settings adapted to the
actual phone or platform to test on. When connecting to a phone via the Connection Proxy interface, the
identification for the phone is displayed in the Connection Proxy window.

Phones on Java platforms up to and including JP-6 are identified by phone model, for example,
“Sony Ericsson K750”.

From Java platform JP-7, phones are identified by platform, for example, “Sony Ericsson_JP-7”.
87 October 2008

www.sonyericsson.com/developer/java

Developers guidelines | Java™ ME, CLDC – MIDP 2
Note: From JP-8 a new communication solution has been implemented, using TCP/IP over local bearers
instead of the earlier serial connection via COM port. Instructions on how to set up the communication is
found in the SDK documentation. Before using JP-8 phones with the Connection Proxy, “Java developer
mode” has to be enabled in the phone via the Service settings menu, accessed by pressing the key
sequence > * < < * < * on the keypad (“<“ and “>” indicates pressing the navigation key left and right).

Note: More information about connection issues when using ODD:

• On device debugging on JP-8 phones using USB
http://developer.sonyericsson.com/docs/DOC-1734

• Firewall issues on JP-8 and Symbian SJP-3 phones
http://developer.sonyericsson.com/docs/DOC-1694

• On device debugging over Bluetooth for JP-7 phones
http://developer.sonyericsson.com/docs/DOC-1684

Note: The Z250 and Z320 series do not allow connection via the Connection Proxy. ODD is therefore not
available for these phones.

Integrating the Sony Ericsson SDK for the
Java™ ME Platform in NetBeans 5

The Sony Ericsson SDK version 2.2.4 (and later versions) has been tested and found working also with
NetBeans 5.5.1.

In the instructions below, <SDK_Path> stands for the path where the Sony Ericsson SDK for the Java™
ME Platform is installed.

Note: Integration of the Sony Ericsson SDK for the Java™ ME Platform in Netbeans requires NetBeans
Mobility Pack add-on.

To add Sony Ericsson emulators:
1. In the Netbeans window, select the menu Tools/Java Platform Manager.

2. Select Add Platform...

3. Select Java Micro Edition Platform Emulator

4. Three platforms are detected, OnDeviceDebug, PC_Emulation\WTK1 and PC_Emulation\WTK1. Select
these platforms

5. Click Next and follow the installation process to the end.

To set the platform and phone that will be used for emulation:
1. In the Netbeans window, select the menu File/<project name> properties... and select Platform in the

table to the left.
88 October 2008

http://developer.sonyericsson.com/docs/DOC-1734
http://developer.sonyericsson.com/docs/DOC-1694
http://developer.sonyericsson.com/docs/DOC-1684

Developers guidelines | Java™ ME, CLDC – MIDP 2
2. Use the drop-down list Project Configuration to choose one of the platforms added above.

3. Use the drop-down list Device to choose one of the emulators available on the chosen platform.

4. Click OK.

Note: From Java Platform JP-7, the phone names for ODD refer to Java Platforms rather than to phone
models, for example, “SonyEricsson_JP-7”.

Note: If NetBeans complains about the missing file "zayit.dll" when trying to run your project with a
Sony Ericsson emulator, you should reboot the computer and try again.

To use Sony Ericsson On Device Debug in a project:
In the Netbeans window, select the menu Run/Debug Main Project, or press F5. Note that you must
choose Debug Main Project, not Run Main Project.

Integrating the Sony Ericsson SDK for the
Java™ ME Platform in Eclipse and
JBuilder 2007

The Device Explorer plugin elaborates upon the existing Device Explorer tool by allowing it to be
integrated with any Eclipse derived IDE. All features found in the standalone Device Explorer tool are
encapsulated in a new view plane.

The Device Explorer concept provides the means to interact with the application manager found on all
Java enabled phones.

The current list of features offered by Device Explorer plugin include:

• Listing of all installed MIDlets
• Starting, stopping, pausing and resuming execution of a MIDlet
• Deleting installed MIDlets
• Manually invoking garbage collection
• Previewing MIDlet information
• Manually deleting RMS entries
• File system browsing and MIDlet installation.

The Device Explorer is entirely connection independent, allowing you to use Bluetooth wireless
technology, USB, or any other means of phone to PC connection.

By using the Device Explorer plugin in conjunction with Eclipse and the EclipseME plugin suite, a powerful
and convenient platform for Java ME based development can be built. Eclipse 3.3 with the EclipseME
1.7.3 plugin has been tested and works properly with the Sony Ericsson SDK version 2.5.0 toolkit.

You can obtain Eclipse from http://www.eclipse.org/downloads/index.php.

More information about EclipseME can be found at http://eclipseme.org/
89 October 2008

http://eclipseme.org/
http://www.eclipse.org/downloads/index.php

Developers guidelines | Java™ ME, CLDC – MIDP 2
An extensive guide for installation and tuning of EclipseME can be found at
http://eclipseme.org/docs/configuring.html.

Acquiring the software
The Device Explorer plugin is offered in two packaged formats - it is currently not offered via the Eclipse
automated package manager service.

The latest version of the plugin can be downloaded from Sony Ericsson Developer World. The plugin also
comes prebundled in the Sony Ericsson SDK for the Java™ ME Platform and can be found within your
installation directory, for example, <install_dir>/JavaME_SDK_CLDC/OnDeviceDebug/lib/devexp/plugins/
com.sonyericsson.sdkme.deviceexplorer_<your SDK version>. However, the prebundled version may be
outdated, why it is highly recommended to look for updates on Developer World.

Installation
Before installing the Device Explorer you must stop any running instances of your Eclipse derived IDE. If
you have acquired the plugin from the Sony Ericsson Developer World site you should proceed to extract
the Zip file into your Eclipse plugin directory (<install_dir>/eclipse/plugins). If you wish to use the version
supplied with the Sony Ericsson SDK you can proceed to simply copy the
com.SonyEricsson.sdkme.deviceexplorer_<your SDK version> directory into your Eclipse plugin folder.

Using the Device Explorer plugin
Having installed the plugin, the new Device Explorer view should be available for immediate usage.
Launch the Device Explorer via menu selection Window – Show View – Other… – Sony Ericsson Device
Explorer.

When the Device Explorer launches you will see a new "Connection Proxy" window. This is a key
component of the Device Explorer plugin that facilitates the connection to the Sony Ericsson phone. As
with the Device Explorer tool, it is offered in a standalone form as part of the SDK. You only require one
instance of the Connection Proxy to be active and it is included with the Device Explorer plugin as a
convenience.

You should leave the Connection Proxy open at all times when using the Device Explorer.

Upon a successful connection, the Connection Proxy will display an image of the relevant phone and a
new Device Explorer panel will be presented in Eclipse. Java applications present in the phone are listed
in the panel. The relevant Device Explorer functions (Play, Stop, Pause, and so on) are available both via
the toolbar buttons and by right-clicking a MIDlet in the list.

The Favorites Folder Explorer
In addition to the Device Explorer, the Favorites Folder Explorer allows you to browse the local file system
and install MIDlets to the phone.

Launch the Favorites Folder Explorer via menu selection Window – Show View – Other… – Sony Ericsson
Favorites Explorer.

When the Favorites Folder Explorer launches you will see a new "Sony Ericsson MIDlet favorites" tab,
listing all local root drives.

You can browse the file system for MIDlets to install to the phone. When a JAD or JAR file is selected, the
phone transfer icon is enabled allowing you to transfer the content.
90 October 2008

http://developer.sonyericsson.com/
http://eclipseme.org/docs/configuring.html

Developers guidelines | Java™ ME, CLDC – MIDP 2
Adding the PC emulator and On Device Debugger to the Eclipse
workspace
Select the menu Window->Preferences. The “Preferences” dialog opens.Select in the left tree: J2ME/
Device Management

In the right panel, click the Import button and add the following two Wireless Toolkits:

• C:\SonyEricsson\JavaME_SDK_CLDC\OnDeviceDebug
• C:\SonyEricsson\JavaME_SDK_CLDC\PC_Emulation\WTK2.

Note: After updating the Sony Ericsson SDK for the Java™ ME Platform, the two directories
eclipseme.core and eclipseme.ui residing in <drive>/Program Files/eclipse/workspace/.metadata/.plugins
have to be deleted before adding the Wireless Toolkits that came with the new SDK version.

Note: From Java Platform JP-7, the platform names for ODD refer to Java Platforms rather than to phone
models, for example, “SonyEricsson_JP-7”.
91 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Appendix D
Sony Ericsson Mobile JUnit

This appendix contains information about the Sony Ericsson Mobile JUnit test tool, and how it can be
used for MIDlet testing in the emulator or on physical phones.
92 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Mobile JUnit features

Mobile JUnit is a unit testing framework from Sony Ericsson, intended for Java ME CLDC phones, where
the results of the test run is communicated to a PC. This enables simple, automated regression testing of
JavaME applications. No manual uploading of MIDlets or manually inspecting test results is needed.

Mobile JUnit primarily supports Sony Ericsson phones, but most Wireless Toolkit emulated devices will
also be able to run Mobile JUnit.

Prerequisites:
• A wireless toolkit, supporting UEI 1.0.1, that outputs the MIDlet System.out to the console. All

Sony Ericsson wireless toolkits and SDK versions have this capability.
• JUnit 3.8.1 installed on the computer. The binary is included with the Mobile JUnit installation, and is

automatically installed, by default in the top directory of the tool (for example:
C:\SonyEricsson\JavaME_SDK_CLDC\Mobile-JUnit\junit.jar).

• Sony Ericsson SDK for the Java ME platform is recommended for running tests on physical devices.

Installing Mobile JUnit

Mobile JUnit can be downloaded from Sony Ericsson Developer World.

To install Mobile JUnit, the downloaded mobile-ju-setup-1.0.exe is run. A dialog asking for where
to install Mobile JUnit appears. The default location is the same as the default location for installation of
the Sony Ericsson SDK. If the SDK is installed elsewhere, that location should be entered instead.

It is recommended to install the sample project by marking the “Sample Project” and “Generate Scripts”
checkboxes during the installation.

If “Generate Scripts” was selected, a dialog will pop up, asking for the path to a java compiler
(javac.exe). Browse and select a javac.exe. Mobile JUnit requires a java compiler to run, and
“Generate Scripts” will generate a script with this particular compiler selected.

Note: The sample project is installed into the selected application directory of the specified WTK derived
SDK. For example, C:\SonyEricsson\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-
ju-sampleproject

The default directory was selected during installation, and the following directories have been added:

Mobile JUnit Runtime <SDK Installation Path>\JavaME_SDK_CLDC\Mobile_JUnit

Sample Project <SDK Installation Path>\JavaME_SDK_CLDC\
PC_Emulation\WTK2\apps\mobile-ju-sampleproject
93 October 2008

www.sonyericsson.com/developer

Developers guidelines | Java™ ME, CLDC – MIDP 2
The sample project test

Testing with Mobile JUnit works very much the same way as with JUnit. The source code to be tested is in
the project src directory, and the project binary in the bin directory. The file defining the tests to perform
is found in a separate test directory.

For example, when “Sample Project” was selected during the Mobile JUnit installation, the sample project
mobile-ju-sampleproject was installed in a folder with subfolders src, bin, build and test. In the
test/src folder, a file named SampleTest.java contains the test code. The code is very similar to a
“regular” JUnit test:

import com.sonyericsson.junit.framework.TestCase;

public class SampleTest extends TestCase {

 public void testCountCharacter() {
CharacterCounter counter = new CharacterCounter();
assertEquals(0, counter.count('a', "Hello");
assertEquals(1, counter.count('a', "a");
assertEquals(0, counter.count('a', "A");
assertEquals(2, counter.count('a', "Attackaz!");

}
}

Note: All void methods with zero arguments starting with “test” are considered tests by the Mobile
JUnit framework.

Running the test

To run the tests of the sample project, use one of the command lines below. Normally, Mobile JUnit
expects the MIDlet to test to be compiled and present in the bin directory. Note the
--compile-midlet switch, which instructs Mobile JUnit to compile and create a new MIDlet. Without
this switch Mobile JUnit will assume that a MIDlet is precompiled and accessible in the bin directory.

Alternative 1 (assuming you selected “Generate Scripts” during the installation):

run-mobile-junit --project-dir:<SDK Installation
Path>\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-ju-sampleproject --
device:SonyEricsson_W800_Emu --compile-midlet:yes

Alternative 2 (replace the --javac parameter with the compiler that Mobile JUnit should use):

java -classpath mobile-ju-1.0.jar;junit.jar
com.sonyericsson.sdkme.junit.OnDeviceTest --project-dir:<SDK Installation
Path>\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-ju-sampleproject --
device:SonyEricsson_W800_Emu --compile-midlet:yes --javac:<my-installation-of-
jdk>\bin\javac.exe
94 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Note: This example assumes a WTK project structure. The tool does however support various
configurations. See “Configuring and running mobile tests” on page 98 for more information.

Note: The command lines above should be run from the Mobile JUnit installation directory. For more
information regarding the --javac parameter see “Configuring and running mobile tests” on page 98.

The tool finds, compiles, and runs tests according to the SampleTest.java file. The emulator starts and
the tests are run:

The emulator terminates automatically, and the test results are output to the console:

Building midlet... 312ms
Building test midlet... 765ms
Uploading and running test midlet... 2s 937ms
..Running with storage root SonyEricsson_W800_Emu
Execution completed.
0 bytecodes executed
0 thread switches
822 classes in the system (including system classes)
0 dynamic objects allocated (0 bytes)
0 garbage collections (0 bytes collected)Done. 6s 109ms

Time: 4,101

OK (2 tests)
95 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Test suites

Another concept found in JUnit, and inherited by Mobile JUnit, is test suites. In the sample project
directory Mobile-ju-sampleproject/test/src, the MyTestSuite.java source file can be found:

import com.sonyericsson.junit.framework.TestSuite;

public class MyTestSuite extends TestSuite {
 public MyTestSuite() {
 addTestSuite(SampleTest.class);
 }
}

Note the following:

• The test suite should inherit from the TestSuite class, available in the framework.

• The test suite must have a constructor without any arguments, otherwise the test framework will not be
able to create it.

• In this constructor, tests are added using the addTestSuite method. In this instance, the
SampleTest from the previous chapter is added, and provides its class as the argument to
addTestSuite. Other TestSuites may be added using this method.

To select a specific test suite or individual test, the --suite: parameter is used. If no such parameter is
provided, the tool will try to find all test cases in the test directory and run them.

Alternative 1 (assuming you selected “Generate Scripts” during installation):

run-mobile-junit --project-dir:<SDK Installation
Path>\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-ju-sampleproject --
device:SonyEricsson_W800_Emu --suite:MyTestSuite --compile-midlet:yes

Alternative 2 (replace the --javac parameter with the compiler that Mobile JUnit should use):

java -classpath mobile-ju-1.0.jar;junit.jar
com.sonyericsson.sdkme.junit.OnDeviceTest --project-dir:<SDK Installation
Path>\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-ju-sampleproject --
device:SonyEricsson_W800_Emu --suite:MyTestSuite --compile-midlet:yes --
javac:<my-installation-of-jdk>\bin\javac.exe

The output should be the same as in the previous example.
96 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
On-device testing on a Sony Ericsson
phone

To run tests on a physical phone, the Wireless Toolkit for testing needs to be changed. If the
Sony Ericsson SDK is installed at the default location C:\SonyEricsson\JavaME_SDK_CLDC\, the on-
device Wireless Toolkit is located at C:\SonyEricsson\JavaME_SDK_CLDC\OnDeviceDebug. The
--wtk: switch is set to this location. The command line is as follows (the --device parameter must
match the connected phone):

Alternative 1 (assuming you selected “Generate Scripts” during installation):

-mobile-junit --project-dir:<SDK Installation
Path>\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-ju-sampleproject --
device:SonyEricsson_W800 --suite:MyTestSuite --compile-midlet:yes --wtk:<SDK
Installation Path>\JavaME_SDK_CLDC\OnDeviceDebug

Alternative 2 (replace the --javac parameter with the compiler that Mobile JUnit should use):

java -classpath mobile-ju-1.0.jar;junit.jar
com.sonyericsson.sdkme.junit.OnDeviceTest --project-dir:<SDK Installation
Path>\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-ju-sampleproject --
device:SonyEricsson_W800 --suite:MyTestSuite --compile-midlet:yes --wtk:<SDK
Installation Path>\JavaME_SDK_CLDC\OnDeviceDebug --javac:<my-installation-of-
jdk>\bin\javac.exe

Before executing, the Connection Proxy application must be launched with the command:

<SDK Installation Path>\JavaME_SDK_CLDC\OnDeviceDebug\bin\serialproxy.exe

The Connection Proxy connects to the phone, and a dialog as below appears. If it fails to connect, click
the Settings button (red circle) and select the serial port to which the phone is connected.
97 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Once connected, the tests can be run by executing the above command line. The test results are output
to the phone display.

Configuring and running mobile tests

There are various ways to configure Mobile JUnit. For most situations the default configuration should
work. Since there are so many ways to structure a project, the tool will allow configuring most of its tasks
and where to put things.

--project-dir
This is used if the project follows the Wireless Toolkit project structure. Source directories, the name of
the MIDlet under test, and so on, are set automatically. However, each of these configuration settings may
be changed individually.

The --project-dir should point at a subdirectory of the apps directory in the Wireless Toolkit.

Example:

--project-dir:C:\SonyEricsson\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\Mobile-
ju-sampleproject

--device
Note: mandatory property.

This is the name of the phone to emulate. Most Java ME enabled IDEs can provide a list of all available
phone names. Examples of device names are SonyEricsson_JP-7 and SonyEricsson_K750.
98 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
--wtk
The location of the Wireless Toolkit to use for emulation or on-device execution of the tests. The
Sony Ericsson SDK provides an on-device Wireless Toolkit.

If no --wtk is set, the tool will use the --project-dir setting to “guess” it.

Example:

--wtk:C:\SonyEricsson\JavaME_SDK_CLDC\OnDeviceDebug

--runmode
In some instances it may be useful to only perform the compilation of the test MIDlet, or to only run the
test MIDlet without compiling it. The --runmode switch enables this.

• --runmode:COMPILE-ONLY – the test is only compiled into a test MIDlet
• --runmode:RUN-ONLY – the compiled test MIDlet is run (if the other configuration settings are kept

from the compilation step)
• --runmode:COMPILE-AND-RUN – both steps are performed.

The default value is COMPILE-AND-RUN.

--suite
The class name of the test to run, usually a test suite, but it may also be an individual test case.

If no suite is provided, the --test-source directory is scanned, and any class that "extends
com.sonyericsson.junit.framework.TestCase" is executed.

Example:

--suite:com.mycompany.myproduct.AllTests

--javac
The location of the java compiler executable, javac.exe. (Mobile JUnit tries to set this to a default value,
but this may not be correct.)

Example:

--javac:C:\java\j2sdk1.4.2_08\bin\javac.exe

--compile-midlet
If set to true, on or yes, this setting instructs Mobile JUnit to build the MIDlet under test. A particularly
nice feature for library development, where no MIDlet is present (this may cause problems with Wireless
Toolkit). It also compiles the MIDlet with line number information, which allows for using the line coverage
feature.

--name
The name of the test run. This name shows up in the xml report.
99 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
--add-line-numbers
This is a special feature for devices that do not provide a stack trace with line number information. If set to
true, on or yes, the --add-line-number setting adds the line number to every assert in the set of
tests.

Note: In the current implementation, the line number will not appear in the stack trace, but in the assert
message.

--test-source, --test-resources, --midlet-source, --midlet-resources, --
midlet-under-test, --midlet-manifest
These are directories and files the tool uses for compiling the test MIDlet. They can be configured to fit the
project structure.

--test-report
This is a file where the XML used internally by the tool is stored. This may be used for reporting. However,
it is recommended to wrap the test run in a regular JUnit test run and use tools that are available for JUnit
to do this.

--coverage, --coverage-map, --coverage-report, --coverage-xsl
Mobile JUnit provides a simple coverage facility for line (statement) and method coverage.

If set to L, Mobile JUnit prepares the test MIDlet for line (statement) coverage.

If set to M, Mobile JUnit prepares the test MIDlet for method coverage.

Examples:

--coverage:L

--coverage:M

--coverage:off

There is also an example how to use the coverage functionality in the build.xml file of the sample
project, target run-with-coverage.

--coverage-map points to a file that contains an internal representation of the source code.

--coverage-report is where the report is output.

--coverage-xsl is an XSL file used to produce the HTML report.

Use the --name parameter to set the HTML report title.

--progress
Before actually running the tests, Mobile JUnit compiles them and upload them to the (emulated) device.
Progress is reported to the user. There are three levels of progress: TEXT, GUI and NONE. The TEXT
progress reports progress to the console, GUI launches a small window to the same effect and NONE does
not report progress at all.

Examples:
100 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
--progress:TEXT

--progress:GUI

--progress:NONE

Note: The GUI option launches an AWT window. Due to AWT threading issues, only a call to
System.exit actually kills the VM. So, if the on-device tests are wrapped in a JUnit test run (see “Using
JUnit to run mobile tests” on page 104), the client code must ensure that the call to System.exit is
made.

--print-config
Setting this switch to true will output all configuration settings to the console. This may be useful when
problems running Mobile JUnit arise.

Example:

--print-config:true

--config-file
Instructs Mobile JUnit to load a file containing configuration settings. If a particular setting is defined on
the command line and in the file, the command line value will take precedence. The file is has the format of
a Java properties file.

Example:

--config-file:C:/projects/my-project/test.properties

Example:

wtk = C:\\SonyEricsson\\JavaME_SDK_CLDC\\OnDeviceDebug\\bin

Note that parameters have no leading --, and that \ must be escaped in Java properties files.

Default values

Below are default values for each of the above settings and a few more, auxiliary settings. Any one of
these settings may be overidden, but it must be made sure that this does not cause some other setting to
be undefined or invalid.

The midlet-name property is somewhat special, since its default value is set by Mobile JUnit. This is due
to the fact that the Wireless Toolkit uses a special naming convention for MIDlet jars.

add-line-numbers=Off
clean=Off
compile=yes
compile-midlet=no
generated-tests = ${test-bin}/generated-tests
javac=${java.home}/../bin/javac
jar=${test-bin}/${midlet-name}-test.jar
jad=${test-bin}/${midlet-name}-test.jad
101 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
midlet-source=${project-dir}/src
midlet-resources=${project-dir}/res
midlet-classes=${output-classes}/../midlet-classes
midlet-manifest=${project-dir}/bin/MANIFEST.MF
midlet-under-test=${project-dir}/bin/${midlet-name}.jar
output-classes = ${test-bin}/classes
progress=TEXT
test=${project-dir}/test
test-bin=${test}/bin
test-classes = ${test-bin}/test-classes
test-report=${test}/testreport.xml
test-resources=${test}/res
test-source=${test}/src
coverage=off
coverage-map-file=${test-bin}/coverage.map
coverage-report=${test}/coverage.html
coverage-result=${test-bin}/coverage.xml
wtk=${project-dir}/../..

Using ANT to run mobile tests

The following is an example on how to use the ANT Java task to run a test:

<path id = "test-classpath" >
 <pathelement location="${junit}" />
 <pathelement location="${mobile-junit-jar}" />
</path>

<target name="run-javame-tests" >
 <java
 classname="com.sonyericsson.sdkme.junit.OnDeviceTest"
 fork="true" failonerror="true" >
 <classpath refid="test-classpath" />
 <arg value = "--device:SonyEricsson_K750_Emu"/>
 <arg value = "--compile:true" />
 <arg value = "--compile-midlet:true" />
 </java>
</target>

Note the class name "com.sonyericsson.sdkme.junit.OnDeviceTest", and the failonerror
instruction, which tells ANT to fail unless all tests pass.

In the mobile-ju-sampleproject/build directory, an entire ANT build.xml is included. It runs the
above snippet. If the ANT installation is properly configured, and if “Generate Scripts” was selected at
installation, the following command line should be sufficient to run it:

ant
102 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
If “Generate Scripts” was not selected at installation, the build.properties file located in the build
directory may need to be modified.

Compiling a standalone test MIDlet

Normally, the MIDlet terminates after running all tests. In some instances, it might be useful to manually
start, stop and restart tests. The command line parameters below will instruct Mobile JUnit to create a
standalone MIDlet.

--test-runner-class:com.sonyericsson.junit.midletrunner.StandaloneMIDlet --
runmode:COMPILE-ONLY

An example can be found in the build.xml file (target name compile-standalone).

Configuring Eclipse and EclipseME for
mobile test development

This section describes how to configure Eclipse version 3.2 and EclipseME version 1.5.0.

The recommended procedure to use Mobile JUnit with EclipseME is as follows:

1. Add the Mobile JUnit framework to the project classpath.

• In project settings, open the Java Build Path properties page
103 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
• Click Add External JARs

• Select the Mobile JUnit framework jar. If installed with default settings, this will be located at
C:\SonyEricsson\JavaME_SDK_CLDC\mobile-ju\mobile-ju-framework-1.0.jar.

2. Use an ANT script to run the tests. See “Using ANT to run mobile tests” on page 102.

Using JUnit to run mobile tests

On-device tests can be run as “regular”JUnit tests. The class
com.sonyericsson.sdkme.junit.OnDeviceTest also implements a JUnit test. The below code
snippet illustrates how to run a on-device test as a JUnit test:

import junit.framework.Test;
import junit.framework.TestCase;
import junit.textui.TestRunner;

public class WrappedOnDeviceTest extends TestCase {

public static Test suite() {
 OnDeviceTest test = new OnDeviceTest();
 return test;
 }
}

The VM argument mechanism is used to configure Mobile JUnit:
104 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
java -Dproject-
dir=C:\SonyEricsson\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\Mobile-ju-
sampleproject -Ddevice=SonyEricsson_W800_Emu [... more parameters ...]
WrappedOnDeviceTest

ANT or any IDE can also be used to configure the VM arguments.

For the above command line to work properly, a main method is required in WrappedOnDeviceTest:

public static void main(String[] args) {
 TestResult result = TestRunner.run(suite());
 int errorsPlusFailures = result.failureCount() + result.errorCount();

 int exitCode = errorsPlusFailures > 0 ? 1 : 0;

 System.exit(exitCode);
 }

An OnDeviceTest can also be created from a set of command line arguments. main is here used in
exactly the way as we used the Mobile JUnit tool in the very first example above.

public static void main(String[] args) {
 OnDeviceTest test = new OnDeviceTest(args);
 [...]
 }
105 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
Links and references

Specifications

CLDC 1.0 (JSR-30) http://www.jcp.org/en/jsr/detail?id=30

CLDC 1.1 (JSR-139) http://www.jcp.org/en/jsr/detail?id=139

JTWI R1 (JSR-185) http://www.jcp.org/en/jsr/detail?id=185

MIDP 1.0 (JSR-37) http://www.jcp.org/en/jsr/detail?id=37

MIDP 2.0 (JSR-118) http://www.jcp.org/en/jsr/detail?id=118

MIDP 2.1 (JSR-118 maintenance release) http://jcp.org/aboutJava/communityprocess/maintenance/
jsr118/JSR_118_MR2_Changelog.pdf

MMAPI (JSR-135) http://www.jcp.org/en/jsr/detail?id=135

AMMS (JSR-234) http://www.jcp.org/en/jsr/detail?id=234

WMA (JSR-120) http://www.jcp.org/en/jsr/detail?id=120

WMA 2.0 (JSR-205) http://www.jcp.org/en/jsr/detail?id=205

3D (JSR-184) http://www.jcp.org/en/jsr/detail?id=184

Bluetooth (JSR-82) http://www.jcp.org/en/jsr/detail?id=82

Optional Package (JSR-75) http://www.jcp.org/en/jsr/detail?id=75

Java ME Web services 1.0 (JSR-172) http://www.jcp.org/en/jsr/detail?id=172

Mascot Capsule http://www.mascotcapsule.com

Mobile Service Architecture, MSA
(JSR-248)

http://www.jcp.org/en/jsr/detail?id=248

SIP API (JSR-180) http://www.jcp.org/en/jsr/detail?id=180

Scalable 2D Graphics API (JSR-226) http://www.jcp.org/en/jsr/detail?id=226

Payment AP! (JSR-229) http://www.jcp.org/en/jsr/detail?id=229

Mobile Internationalisation API (JSR-238) http://www.jcp.org/en/jsr/detail?id=238

Java Bindings for OpenGL ES API
(JSR-239)

http://www.jcp.org/en/jsr/detail?id=239

Security and Trust API (JSR-177) http://www.jcp.org/en/jsr/detail?id=177

Location AP! (JSR-179) http://www.jcp.org/en/jsr/detail?id=179

Content Handler AP! (JSR-211) http://www.jcp.org/en/jsr/detail?id=211
106 October 2008

http://www.jcp.org/en/jsr/detail?id=30
http://www.jcp.org/en/jsr/detail?id=185
http://www.jcp.org/en/jsr/detail?id=37
http://www.jcp.org/en/jsr/detail?id=118
http://www.jcp.org/en/jsr/detail?id=135
http://www.jcp.org/en/jsr/detail?id=120
http://www.jcp.org/en/jsr/detail?id=205
http://www.mascotcapsule.com
http://www.jcp.org/en/jsr/detail?id=139
http://www.jcp.org/en/jsr/detail?id=139
http://www.jcp.org/en/jsr/detail?id=139
http://www.jcp.org/en/jsr/detail?id=82
http://www.jcp.org/en/jsr/detail?id=75
http://www.jcp.org/en/jsr/detail?id=120
http://www.jcp.org/en/jsr/detail?id=172
http://www.jcp.org/en/jsr/detail?id=248
http://www.jcp.org/en/jsr/detail?id=180
http://www.jcp.org/en/jsr/detail?id=226
http://www.jcp.org/en/jsr/detail?id=229
http://www.jcp.org/en/jsr/detail?id=238
http://www.jcp.org/en/jsr/detail?id=239
http://www.jcp.org/en/jsr/detail?id=234
http://www.jcp.org/en/jsr/detail?id=177
http://www.jcp.org/en/jsr/detail?id=179
http://www.jcp.org/en/jsr/detail?id=211
http://jcp.org/aboutJava/communityprocess/maintenance/jsr118/JSR_118_MR2_Changelog.pdf

Developers guidelines | Java™ ME, CLDC – MIDP 2
The Java ME platform

3D developer tools/plugins

Sony Ericsson Developer World http://www.sonyericsson.com/developer/

J2ME white paper http://java.sun.com/products/cldc/wp/KVMwp.pdf

OTA Provisioning http://java.sun.com/products/midp/OTAProvisioning-1.0.pdf

Helpful hints (white paper) http://java.sun.com/j2me/docs/pdf/midpwp.pdf

Java Developer Connection Web site
with Java Technical documentation

http://developer.java.sun.com/developer/infodocs/

Java Consumer Software Documentation
Web site

http://java.sun.com/j2me/docs/

Mascot Capsule Micro3D Version 3 plug-
ins

http://www.mascotcapsule.com/toolkit/sony_ericsson/

Mascot Capsule Micro3D version 4
(JSR-184) plugins

http://www.mascotcapsule.com/M3G/download/e_index.html
107 October 2008

http://www.sonyericsson.com/developer/
http://java.sun.com/products/cldc/wp/KVMwp.pdf
http://java.sun.com/products/midp/OTAProvisioning-1.0.pdf
http://java.sun.com/j2me/docs/pdf/midpwp.pdf
http://developer.java.sun.com/developer/infodocs/
http://java.sun.com/j2me/docs/
http://www.mascotcapsule.com/toolkit/sony_ericsson/
http://www.mascotcapsule.com/M3G/download/e_index.html

Developers guidelines | Java™ ME, CLDC – MIDP 2
Index

Numerics
3D APIs ... 24

A
abbreviations .. 7
Advanced Multimedia Supplements 22
AMMS ...22, 46
audio support .. 20

B
Bluetooth API .. 25

C
camera specifications ... 48
CLDC .. 44
command types .. 31
Content Handler API ... 29

D
debug interface ... 47

E
Eclipse .. 89
error messages ... 33

F
File connection API25, 69
font sizes ... 50

I
IMEI ... 59

J
Java Bindings for OpenGL® ES API 28
Java heap ... 57
Java platforms .. 15
JBuilder ... 89
JSR-120 ..18, 46
JSR-135 ..20, 45
JSR-172 ..26, 46
JSR-177 ..28, 47
JSR-179 ..29, 47
JSR-180 ..26, 47
JSR-185 .. 45
JSR-205 ..19, 46
JSR-211 ..29, 47
JSR-226 .. 26
JSR-229 .. 27
JSR-234 ..22, 46
JSR-238 ..27, 47

JSR-239 .. 28, 47
JSR-248 .. 18, 46
JSR-256 .. 29, 47, 74
JSR-75 .. 24, 46, 66
JSR-82 .. 25, 46, 73
JTWI .. 45

K
key mappings ... 51
Knowledge base ... 83

L
links and references .. 106
Location API ... 29

M
memory ... 30
memory usage .. 57
MIDP ... 17
MMAPI .. 20, 45
Mobile Internationalization API 27
Mobile JUnit ... 92
Mobile sensor API ... 29
Mobile Service Architecture 18
MSA .. 18, 46
multitasking .. 59

N
navigation key ... 30
NetBeans .. 88
networking .. 61

P
Payment API ... 27
PDA optional packages API 24, 46
PIM API ... 24, 66
port numbers .. 19

S
Scalable 2D Vector Graphics API 26
screen specification .. 41
Security and Trust API .. 28
Session Initiated Protocol API (SIP) 26
standby MIDlets .. 61
system properties ... 78

V
video support .. 21
108 October 2008

Developers guidelines | Java™ ME, CLDC – MIDP 2
W
web services API .. 26
Wireless Messaging API 18
WMA ...18, 46
WMA 2.0 ...19, 46
109 October 2008

	Preface
	Purpose of this document
	Sony Ericsson Developer World
	Document conventions
	Products
	Terminology and abbreviations

	Trademarks and acknowledgements
	Java Verified™ program for Java ME platform

	Document history

	Contents
	The Java ME platform
	Sony Ericsson Java platforms
	Phones not conforming to Sony Ericsson Java Platforms

	MIDP 2 support
	MSA (JSR-248)
	WMA (JSR-120)
	WMA 2.0 (JSR-205)
	MMAPI (JSR-135)
	Audio support
	Video support

	Advanced Multimedia Supplements (JSR-234)
	JSR-234 support in JP-7 phones
	JSR 234 support in JP-8 phones

	3D APIs
	PDA optional packages (JSR-75)
	PIM optional package
	File Connection optional package

	Bluetooth API (JSR-82)
	Java ME Web Services 1.0 (JSR-172)
	SIP (Session Initiated Protocol) API (JSR-180)
	Scalable 2D Vector Graphics API for J2ME (JSR-226)
	Payment API (JSR-229)
	Mobile Internationalisation API (JSR-238)
	Java Bindings for OpenGL® ES API (JSR-239)
	Security and Trust API (JSR-177)
	Location API (JSR-179)
	Content Handler API (JSR-211)
	Mobile sensor API (JSR-256)
	Memory
	The navigation key
	Simultaneous key presses
	Command types
	Phones with two selection keys
	Phones with three selection keys

	Error messages
	Sony Ericsson SDK for the Java™ ME Platform
	Security policy for Sony Ericsson phones
	Security Configuration

	Download and installation

	Appendix A Phone specifications
	Screen and memory specifications
	Java specifications
	Camera specifications
	Font sizes
	Key mapping

	Appendix B Java programming issues
	Hints for developing MIDlets
	Writing efficient applications
	Low-level MIDP user interface

	Memory usage
	Java heap
	Video RAM areas

	Retrieving the IMEI number
	Minimising and maximising MIDlets
	Multitasking MIDlets
	Adding events in the Activity menu from a MIDlet

	Standby MIDlets
	Autostarting MIDlets
	Network APIs
	Network API features
	HTTP 1.1 implementation
	Secure sockets and HTTPS connections

	JAD/manifest attributes
	Vodafone JAD attributes

	Serial Port Communications (from JP-7)
	JSR-75 implementation
	PIM API
	File Connection API

	Video overlay
	Video rotation/mirroring
	Video rotation/mirroring during playback

	Tips for using the JSR-82
	Local device
	Device discovery
	Games
	Managing connections between Bluetooth SDP records and a game server

	The accelerometer sensor in JP-8 phones
	JSR-211 content handlers
	JSR-211 Walkman® player content handler
	JSR-211 interaction with browser
	JSR-211 Shortcut launcher

	Querying system properties
	Supported classes
	System.getProperty(String Key) calls
	Bluetooth Local device properties (JSR-82)
	Implementation specific properties in JSR-184

	Knowledge base

	Appendix C Sony Ericsson SDK for the Java™ ME Platform
	Features
	Installing and updating the SDK

	Integrating the Sony Ericsson SDK for the Java™ ME Platform in NetBeans 5
	Integrating the Sony Ericsson SDK for the Java™ ME Platform in Eclipse and JBuilder 2007

	Appendix D Sony Ericsson Mobile JUnit
	Mobile JUnit features
	Installing Mobile JUnit
	The sample project test
	Running the test

	Test suites
	On-device testing on a Sony Ericsson phone
	Configuring and running mobile tests
	Default values

	Using ANT to run mobile tests
	Compiling a standalone test MIDlet
	Configuring Eclipse and EclipseME for mobile test development
	Using JUnit to run mobile tests

	Links and references
	Specifications
	The Java ME platform
	3D developer tools/plugins

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	I
	J
	K
	L
	M
	N
	P
	S
	V
	W

